

Lindane Section Chief

LIFE SURFING

SURFactant enhanced chemical oxidation for remediatING DNAPL. Overview

Net J., Cano, E., Fernández, J., Velilla, S.M.

Department of Agriculture, Livestock and Environment, Government of Aragon, Spain

HCH SOURCES

- OLD FACTORY OF INQUINOSA
- SARDAS LANDFILL
- □ BAILÍN LANDFILL

PROJECT IS
DEVELOPED AT THE
BAILÍN LANDFIL
in an area with
residual DNAPL

ORIGIN OF THE PROBLEM

•Lindane is a organochlorine (C6H6Cl6), the gamma hexachlorocyclohexano isomer, widely used until 1991 as insecticide in agriculture and for the treatment of parasites in cattle and louses and scabies in human beings.

•Since **2009** it has been prohibited or restricted in the majority of the countries under the **Stockholm Convention on Organic Persistent Pollutants**.

•Lindane production is a very inefficient process:

☐ Commercial Product (10% of HCH): Lindane, y-HCH

☐ Waste (90%)

- SOLIDS: Other HCHs isomers

 LIQUIDS: Chlorinated Organic Compounds
 (Chlorobenzenes and HCHs) as DNAPL (Dense Non Aqueous Phase Liquids) produced in failed reactions and distillation tails

ORIGIN OF THE PROBLEM

- INQUINOSA COMPANY PRODUCED LINDANE AND GENERATED WASTE FROM 1975 TO 1992.
- INQUINOSA DUMPED SOLID AND LIQUID WASTE FIRST AT THE SARDAS LANDFILL AND THEN AT THE BAILIN LANDFILL:
 - ☐ BAILIN LANDFILL: APPROXIMATELY 65,000 T OF SOLID WASTE OF HCH AND AN ESTIMATED 1,400 M3 OF DNAPL.

ORIGIN OF THE PROBLEM

PROBLEM:

- Landfill without INSULATION at the basis
- < 1 km to the receiver channel: Gállego River</p>
- DNAPL Filtrated and movement through the fracturated aquifer .

THEN:

In 2014, the HCH solid waste and contaminated soils from the old Bailin landfill were transferred to a isolated security cell.

RESULT

- Old Bailin Landfill without HCH Solid wastes
- But DNAPL already filtrated into the aquifer

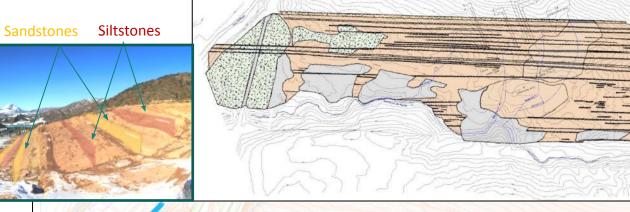
BAILIN GEOLOGY

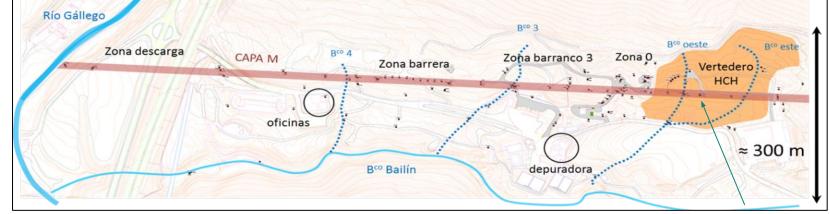
<u>Lithology:</u>

- Sandstones and siltstones

Structure:

- Subvertical layers
- Fractures transverse to the layers
- More developed fracturing in sandstones


PROBLEM


"M" Layer connected with Gállego River

CONSEQUENCE

HIGH RISK RIVER POLLUTION

OLD BAILIN LANDFILL

MORE ACTION IS NEEDED

DNAPL REMOVAL

- Now <u>residual DNAPL</u>, adhered to fractures and "cul de sac", which can no longer been extracted by pumping
- As long as the DNAPL source continues a plume of contamination will exist

CONSEQUENCE
HIGH RISK RIVER POLLUTION
CONTINUE

EXTRACTED DNAPL EVOLUTION (2010-2022)

MORE ACTION IS NEEDED

TRANSITION TO THE LIFE SURFING PROJECT

LIFE DISCOVERED PROJECT 2014/2017

- Demonstration project for the application of chemical oxidation in situ (ISCO).
- Objective: Oxidize contaminated water at 40 m depth in fractures.
- Location: Bailín Aquifer
- Injection of an oxidizing product to oxidize the contaminant mass (chemical destruction).

RESULTS:

☐ GREAT SUCCESS IN GROUNDWATER

BUT:

MINIMAL EFFECTIVENESS ON DNAPL

SOURCE REMAINS: RESIDUAL DNAPL REMAINS IN FRACTURES

MORE ACTION IS NEEDED

LIFE SURFING PROJECT (GENERAL INFORMATION)

To face the Residual DNAPL, the LIFE SURFING project is conceived

- COMPLETE NAME: <u>SURF</u>actant enhanced chemical oxidation for remediat<u>ING</u> DNAPL.
- **GENERAL OBJECTIVE**: To demonstrate the field feasibility of a soil decontamination technique in soils containing residual DNAPL of HCH residues (POPs).
- OTHERS OBJECTIVE:
 - **✓** Evaluate the <u>replicability</u> and <u>transferability</u> for its application in other locations affected by the same problem
 - ✓ Reduce the risk to Health
 - ✓ Guarantee the reduction of environmental risks
 - ✓ Analyse the large-scale applicability
- PROJECT LOCATION: BAILIN ACUIFER
- PROJECT DURATION: 60 MONTHS
- BUDGET:
 - ✓ Total Amount € 2,081,507
 - **У** EC Co-funding 56.8% of total eligible budget: € 1,182,452.

LIFE SURFING PROJECT (GENERAL INFORMATION)

PARTNERS

Coordinating Beneficiary:

Government of Aragon (SPAIN)

Associated Beneficiaries:

Sociedad Aragonesa de Gestión Agroambiental -SARGA-(SPAIN)

International HCH and pesticides association -IHPA- (NETHERLANDS)

Complutense
University of Madrid
-UCM(SPAIN)

University of Stuttgart
-USTUTT(GERMANY)

«A» ACTIONS: PREPARATORY ACTIONS

•A.1 SURFING TEST DESIGN:

- Evaluation of the optimal location of the test pilot cell.
- An exhaustive analysis of all available hydrogeological and geochemical data from the pilot test area.
- **Engineering study of the design of the different zones** (injection zone, test zone and barrier zone).
- **Borehole planning**
- **Topography**

•A.2 PERMIT APPLICATION AND ADMINISTRATIVE PROCEDURES:

- **✓** Other departments of Government of Aragon.
- **Local Administration**
- **Ebro Basin Authority (CHE)**

•A.3 STAKEHOLDERS INFORMATION AND CONSULTATION

- **✓** Official Bulletin of Aragon (Publication)
- Environmental associations, Local Administration, population, industries and Non-governmental organisations information
- **Local and regional communication**

«B» ACTIONS: IMPLEMENTATION ACTIONS

•B.1 SURFING TEST PREVIOUS WORK:

- Construction Preliminary Works (accesses, security enclosure, basements...).
- Field implementation of equipment, material means, technical supplies (prepared each phase).

•B.2 SURFING TEST implementation :

- ✔ Phase 0: Preparatory test .
- ✔ Phase 1: SEAR-On Site oxidation.
- **✔** Phase 2: Surfactant Enhanced In Situ Chemical Oxidation (S-ISCO).
- **✔** Phase 3: ISCO test- Rebound effect evaluation (if needed).

•B.3 SURFING FULL-SCALE APPLICABILITY PRELIMINARY DESIGN

✓ SURFING Full-scale applicability Preliminary Design

•B.4 REPLICABILITY AND TRANSFERABILITY

- **✓** Replicability and Transferability Test
- **✔** Replicability and Transferability assessment

«C» ACTIONS: . MONITORING OF THE IMPACT OF THE PROJECT

•C.1 PREVIOUS TEST MONITORING:

- ✓ Initial toxicity-biodegradability.
- **✓** Pumping and Tracer test monitoring.
- ✔ Pre operational situation (baseline).

•C.2 SURFING TEST MONITORING:

- **✓** SURFING Test monitoring.
- ✓ Environmental impact monitoring.
- Replicability and Transferability Test monitoring.

•C.4 LIFE PERFORMANCE INDICATORS

•C.5 LIFE CYCLE ASSESSMENT

«D» ACTIONS: PUBLIC AWARENESS AND DISSEMINATION OF RESULTS

- •D.1 COMMUNICATION, DISSEMINATION AND RAISE AWARENESS ACTIONS:
 - ✓ Communication and dissemination pack.
 - ✓ Layman report.
 - ✓ Informative materials, seminars and visits.
 - ✓ Open and closing sessions.
 - ✓ Interactive video.

- •D.2 PARTICIPATION AND ORGANIZATION OF NETWORKING AND INFORMATION PLATFORMS RELATED TO THE PROJECT OBJECTIVES.
 - **✓** LIFE networking exchange group.
 - **✓** Networking and transferability to other technical stakeholders.
 - **✓** Newsletter and Specialized publications.
 - ✓ Intervention in a international event (Brussels).
- •D.3 14TH HCH & PESTICIDES FORUM

«E» ACTIONS: PROJECT MANAGEMENT

- •E.1 PROJECT MANAGEMENT:
- •E.2 MONITORING THE PROJECT PROGRESS:
 - Execution of a project monitoring protocol.
 - ✓ 4 Meetings to be held in DGA facilities.
- •E.3 EXTERNAL ECONOMIC AUDIT
- •E.4 AFTER LIFE COMMUNICATION PLAN

PHASE 0: PREPARATORY TEST

Actions:

- Injection and pumping hydrogeological tests
- Tracer tests
- Preliminary test in the barrier zone.

Objective:

• Acquire the greatest possible knowledge of the of the aquifer

- Distribution of fracturing and its connectivity
- Permeability
- Injection flows
- Flows transferred downstream

- Contact time of the fluid with the contaminant
- Arrival times of the tracers to the river and barrier zone
- Flow speed.

PHASE 1:
SEAR
ON SITE Oxidation

Actions:

- Injecting surfactant with a small percentage of hydrogen peroxide into the selected piezometers, in some cases with recirculation, and finally pumping to recover the injected material
- On-site treatment of the extracted fluid that consists of a treatment through activated carbon, alkaline hydrolysis and a Fenton treatment

Objective:

 Solubilise the residual DNAPL and proceed to pump it, recovering the largest possible volume, avoiding the release of surfactant fluid and its drag downstream of the injection zone.

On-site treatment of the extracted fluid

PHASE 2:

Enhanced in situ chemical oxidation with surfactants
S-ISCO

Actions:

• Injection of an oxidant, sodium persulfate, with alkaline activation aided by the addition of a non-ionic surfactant. The injection is carried out in the piezometers selected by the data from the previous phase, and the injected fluid (surfactant + oxidant) is recirculated and finally the generated front is treated in the barrier zone

Objective:

• Degrade the largest possible volume of residual dense phase (DNAPL).

PHASE 3: ISCO test- Rebound effect evaluation

Actions:

• Injection of an oxidant (ISCO test). The injection is carried out in the piezometers selected by the data from the previous phase.

Objective:


• Evaluate the possible rebound effect, since after the different injections of SEAR and S-ISCO fluids in the previous phases, it is possible that there is a diffusion of the contaminants and the rebound effect occurs

Depending on the importance of this effect, a new injection of ISCO will be done.

TREATMENT SUMARY

https://descontaminacionlindano.aragon.es/

