

Chemical Engineer

Sociedad Aragonesa de Gestión Agroambiental

Herranz, C., Fernández, J., Santos, A., Salvatierra, A., Cano, E., Lorenzo, D., Arjol, M.A.

LIFE SURFING

- TRACERS
- SEAR 1 2 (Surfactant Enhanced Aquifer Remediation)
- S-ISCO (Surfactant Enhanced in-situ Chemical Oxidation)

FLUIDS EXTRACTED FROM SEAR TEST

EMULSION highly polluting with

Chlorinated Organic Compounds

Surfactant E-mulse 3®

VARIOUS TECNIQUES ARE EVALUATED

3 on-site treatments

- Advanced Oxidation (Fenton Reagent)
- Activated Carbon and its Regeneration
- Thermal Alkaline Hydrolysis with Aireation

REUSE

2. ACTIVATED CARBON AND ITS REGENERATION

1. ADVANCED OXIDATION

Selective Oxidation of COCs with Fenton Reagent

$$H_2O_2 + Fe^{2+} \rightarrow OH^{-} + Fe^{3+} + OH^{-}$$
 Eq.1

$$Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HO_2 + H^+$$
 Eq.2

The catalyst, Fe²⁺, is regenerated by Eq.2, producing the HO2⁻ radical with lower oxidizing power than OH⁻

LAB

1. ADVANCED OXIDATION

3,7 g/L DNAPL solubilized + 11 g/L E-mulse 3®

- 12 mol H₂O₂ / 1 mol COC
- Ratio H_2O_2 / $Fe^{2+} = 32$

Stoichiometric amounts of hydrogen peroxide 50% - 100% - 200%

1. ADVANCED OXIDATION

Selective oxidation of COCs vs Surfactant

LAB	50% stoichiometric	100% stoichiometric	200% stoichiometric
ΣCOCs	<80% - 144 h	>80% - 144 h	>80% - 48 h
Surfactant Capacity	↓20% - 144h	↓40% - 144h	↓50% - 144h

1. ADVANCED OXIDATION

- Volume 300L
- Agitation
- Recirculation
- Slow Aireation
- pH control

PILOT TEST

1. ADVANCED OXIDATION

200L - 5,166g/L DNAPL solubilized + 10 g/L E-mulse 3[®]

~ 24 mM COCs - 220 mM H_2O_2 - 5 mM Fe^{2+} pH 5,7 \rightarrow 3,3 H_2SO_4

90% Stoichiometric amount of hydrogen peroxide

1. ADVANCED OXIDATION

- Keeping agitation and recirculation
- Samples taken at 2, 5, 10, 24, 48 and 72 hours
- Neutralization of samples before análisis FID/ECD
- COCs conv. >95% at 48h (total H_2O_2 consumption)
- •Neutralization of emulsion before reuse with NaOH 25% pH 3,3 \rightarrow 11,4 (\downarrow Fe(OH) $_3$ and \downarrow Fe(OH) $_2$)

ADVANCED OXIDATION

Solubilization Capacity?

- •24 hours ultrasonic agitation
- Analysis 9 g/L COCs

~ 10 g/L surfactant

2. ACTIVATED CARBON AND ITS REGENERATION

2. ACTIVATED CARBON AND ITS REGENERATION

Adsorption of COCs and Surfactant on Granular Activated Carbon (GAC) and AC regeneration with Thermal Activated Persulfate (TAP)

$$S_2O_8^{2-} \xrightarrow{Temperature} 2SO_4^{-}$$

2. ACTIVATED CARBON AND ITS REGENERATION

Granular Activated Carbon (GAC)

- 905 m²/g BET surface area
- 0,42 cm³/g total pore volume
- WWTP Bailin landfill

2. ACTIVATED CARBON AND ITS REGENERATION

250L - 8 g/L DNAPL solubilized + 16 g/L E-mulse 3®

- Pump 400 L/h
- TR = ~ 40 min (1 cycle)
- Bed porosity = 275 L
- Test 20 hours (30 cycles)
- Samples: 1,2,3,4,5,7,20 hours

2. ACTIVATED CARBON AND ITS REGENERATION

PILOT TEST

250L - 8 g/L DNAPL solubilized + 16 g/L E-mulse 3®

- 40 g/L Na₂S₂O₈
- 75% stoichiometric amount COCs
- 45 min 42°C-45°C
- Test 20 hours
- Samples: 1,5,20 hours

$$S_2O_8^{2-} \xrightarrow{Temperature} 2SO_4^{-}$$

2. ACTIVATED CARBON AND ITS REGENERATION

PILOT TEST

GAC FILTER

- Drained
- Washed
- Disassembled
- Dryed
- Homogenized
- Samples extracted and analyzed

2. ACTIVATED CARBON AND ITS REGENERATION

- [COCs]_{SAT} ~ 120 mg/g carbon
- [SURF]_{SAT} ~ 160 mg/g carbon
- Adsorption-regeneration cycles

Recovery 80% adsorption capacity GAC

Lower Surfactant adsorption in each cycle

PILOT TEST

- Adsorption > 99%
- [COCs] = 8 mg/g < SAT
- [SURF] = 16 mg/g < SAT

AFTER REGENERATION

COCs ~ 30%

- PS 75% stoichiometric COCs
- Surfact consumption
- GAC consumption (0,5 g PS / g carbon)

ON SITE REMEDIATION OF FLUIDS EXTRACTED IN SEAR TREATMENT IN THE LIFE SURFING PROJECT AT BAILIN – SABIÑÁNIGO (HUESCA):

Efficiency of TAP in COCs oxidation in GAG filter

1. ADVANCED OXIDATION

- Selective Conv. > 95% COCS 48 hours (pH = 3, room conditions)
- Stoichometric amount peroxide
- Fenton reactive $(H_2O_2 / Fe^{2+}) = 45/1$
- Treated emulsion → Surfactant capacity

2. ACTIVATED CARBON AND ITS REGENERATION

- Adsorption > 99% COCs
- Recovery ~ 80% adsorption capcity GAC (lab)
- Adsorption-Regeneration
- Umproductive consumption of persulfate
- Both techniques are capable of treating the emulsion resulting from the SEAR tests
- Optimice the cost of the treatments
- Improve operating conditions

THANK YOU FOR YOUR ATTENTION

cherranzr@sarga.es

http://www.sarga.es

