

Technical Assistant
Service of Contaminated Soils

UNIQUE STRATEGIC PROJECTS IN THE SITES AFFECTED BY HCH IN ARAGON

Velilla, S.M., Cano. E. Monge, L., Visanzay, A.

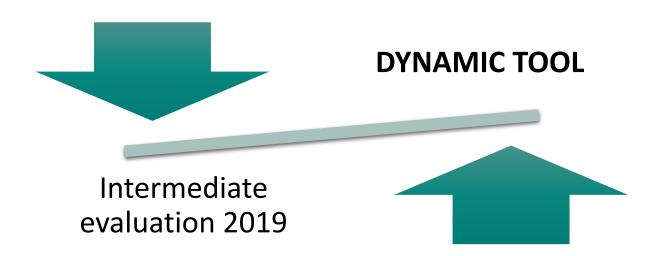
UNIQUE STRATEGIC PROJECTS IN THE SITES AFFECTED BY HCH IN ARAGON

Strategic Action Plan

Definitive closure of the Bailín security cell

CORHIBA

Dismantling and demolition of the old Inquinosa factory


STRATEGIC ACTION PLAN (1/4)

CALENDAR

1st versión November 2016 Presentation Aragón Parliament Incorporation of improvements

2nd version December 2016

STRATEGIC ACTION PLAN (2/4)

MAIN IDEAS

LOW ENERGY REMEDIATIVE ACTIONS	risk reduction and sustainable solutions			
ACTIONS PREFERABLY IN SITU	environmental risk reduction			
FINAL PRODUCTS	less hazardous, shorter life, low mobility			
COMMITMENT TO BIOLOGICAL METHODS	assisted with technological solutions			
MODELIZATION	predict and determine the efficiency of the results			

The Strategic Plan is a dynamic tool

Incorporated as an Annex to the GIRA 2017-2022

STRATEGIC ACTION PLAN (3/4)

MAIN ACTIONS TO BE DEVELOPED

Action I

Ensure the supply of drinking water and the quality of the irrigation water.

Action I

Isolation of waste.

Action II

Pumping of the free phase (DNAPL) and decontamination of soils and the rocky substrate.

Action III

Decontamination of surface soils and restoration.

Action IV

Disposal of waste

STRATEGIC ACTION PLAN (4/4)

ACTION I

 Definitive closure of the Bailín security cell

ACTION III

- CORHIBA
- Dismantling and demolition of the old Inquinosa factory

UNIQUE STRATEGIC PROJECTS IN THE SITES AFFECTED BY HCH IN ARAGON

DEFINITIVE CLOSURE OF THE BAILÍN SECURITY CELL (1/7) BACKGROUND

BAILIN LANDFILL OPERATION PERIOD: 1985-1992

1995- ENVIRONMENTAL
IMPACT DECLARATIONconstruction project, sealing
and control plan and
monitoring of a security
deposit

PHASE A:

HYDROGEOLOGICAL CONFINEMENT- SURFACE WATERPROOFING (1996) AND CONTROL AND MONITORING **STAGE 1**: Construction of the new security cell, and auxiliary and support infrastructure (2009-2013)

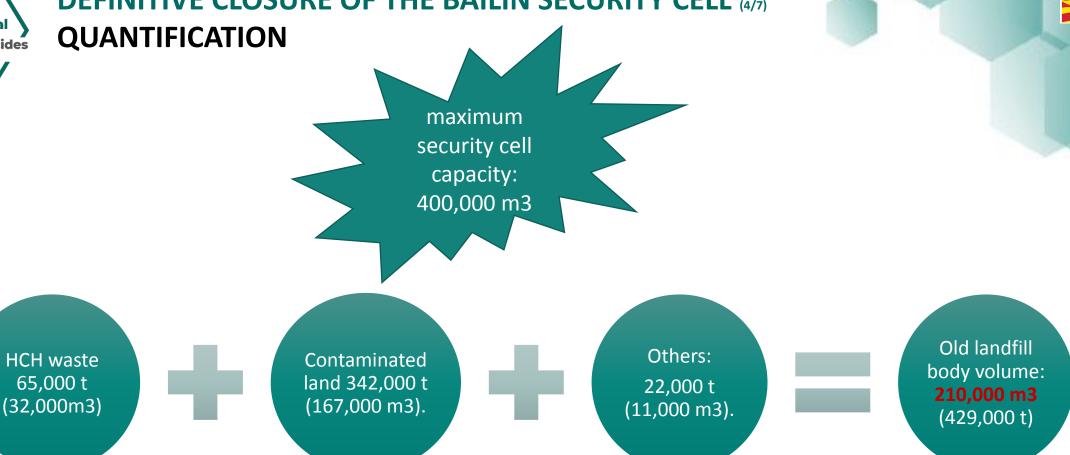
PHASE B integrated environmental authorization (2009)

2004- DNAPL UPWELLING EMERGENCE migration of contaminants occurs exclusively in a westerly direction (towards the Gállego river) STAGE 2: Dismantling of the HCH landfill, and transfer to the new cell (2014)

STAGE 3: Sealing of the new security cell.

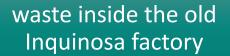
DEFINITIVE CLOSURE OF THE BAILÍN SECURITY CELL (2/7)

DEFINITIVE CLOSURE OF THE BAILÍN SECURITY CELL (3/7)



HDPE CHECK 2021

DEFINITIVE CLOSURE OF THE BAILÍN SECURITY CELL (4/7)



Is estimated that **1,400 m3** of DNAPL were spilled, most of which escaped into the receiving channel before sealing the leakage

DEFINITIVE CLOSURE OF THE BAILÍN SECURITY CELL (5/7) **WASTE PENDING**

externally managed 2017

waste from its dismantling and demolit

waste from cleaning

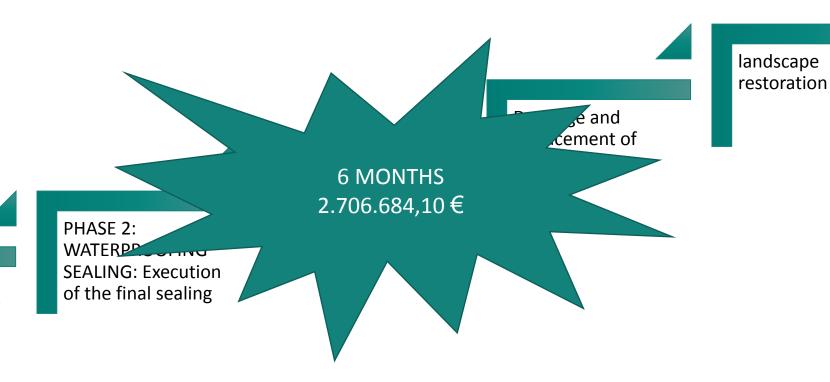
the Bailin ravine

1.232,29 m3

waste from the auxiliary facilities of phase b

• still in use

DEFINITIVE CLOSURE OF THE BAILÍN SECURITY CELL (6/7)



PHASE 1
Transfer of
waste
2 weeks

DEFINITIVE CLOSURE OF THE BAILÍN SECURITY CELL (7/7) EXECUTION, SCHEDULE & BUDGET

PHASE 1. TRANSFER OF WASTE: Opening of the provisional seal of the security cell to incorporate the waste

UNIQUE STRATEGIC PROJECTS IN THE SITES AFFECTED BY HCH IN ARAGON

CORHIBA (1/10)

DISMANTLING OF THE OLD LANDFILL IN 2014

Surface: 3,1 Ha

Runoff coefficient nearly of 1

AÑO	DISCHARGES (m³)		
2012	1.760,80		
2013	17.166,40		
2014	23.749,20		
2015	18.621,20		
2016	35.663,40		
2017	16.792,52		
2018	40.969,60		
2019	17.858,90		
2020	26.707,80		
2021	17.753,50		
2022	9.161,70		

CORHIBA (2/10)

2 ACCESSES IN THE NORTH AREA

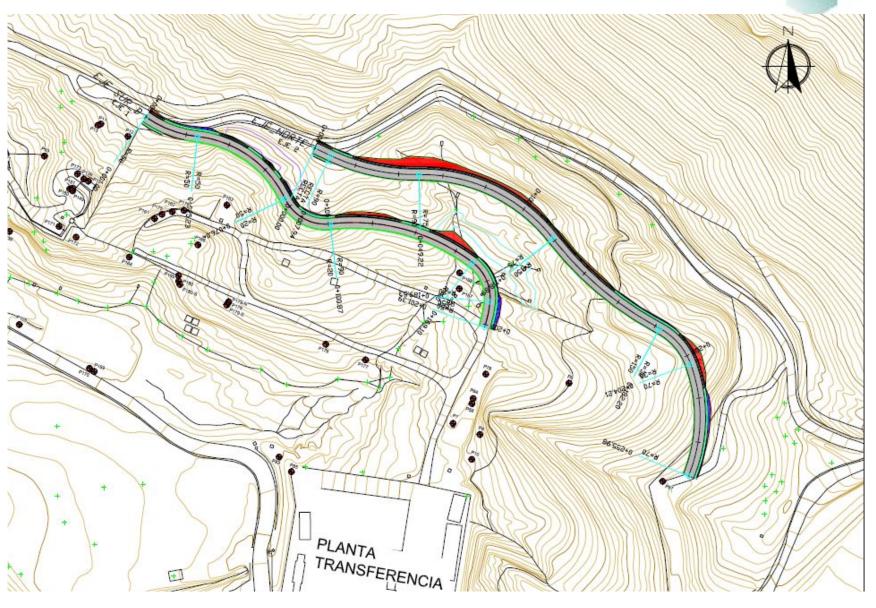
ACCESS WIDTH: 5 meters with transversal slope towards the side of the basin

MAXIMUM HEIGHT OF ACCESS WALL: 4 meters

MAXIMUM HEIGHT OF TERRACES: 3 meters

TERRACES

Minimize dragging produced by runoff


Bioremediation of the superficial zone of the surface and vadose zone

Ability to retain and degrade contaminants

CORHIBA (3/10)

CORHIBA (4/10)

IN-SITU CONCRETE WALLS

ADVANTAGES

- Great heights can be reached.
- Possibility of small foundations and therefore little movement of affected land.
- Conventional construction systems.
- High degree of durability

DISADVANTAGES

- Average visual and environmental impact
- Cost
- Complicated execution considering the location

BREAKWATER WALLS

ADVANTAGES

- Ease of drainage through the stone blocks.
- Easy to adapt to differential ground movements
- ease of integration of the breakwater into the environment.
 natural material

DISADVANTAGES

 Pipelines for services will not pass through the wall or its back

CORHIBA (5/10)

GABION WALLS

ADVANTAGES

- High resistance: totally permeable and relieve of tensions that accumulate in the extrados of traditional walls.
- Great flexibility: support differential movements and settlements without loss of efficiency.
- Built easily and cheaply

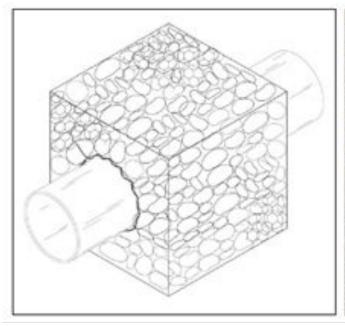
DISADVANTAGES

 Galvanized steel mesh will corrode in acidic environments. Quality control- galvanized gabions

REINFORCED EARTH WALLS

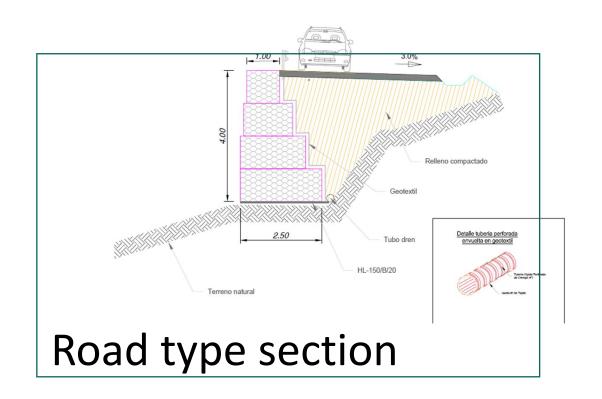
ADVANTAGES

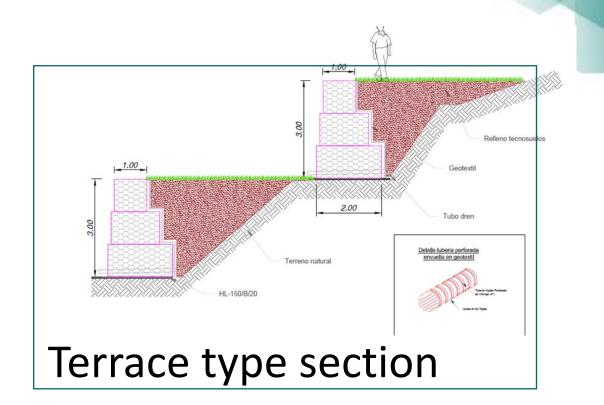
- Cost-efficient system
- Appropriate in areas with limited work surface or for a quick execution
- Flexible technique: topographic adaptability, absorption of foundation settlement.


DISADVANTAGES

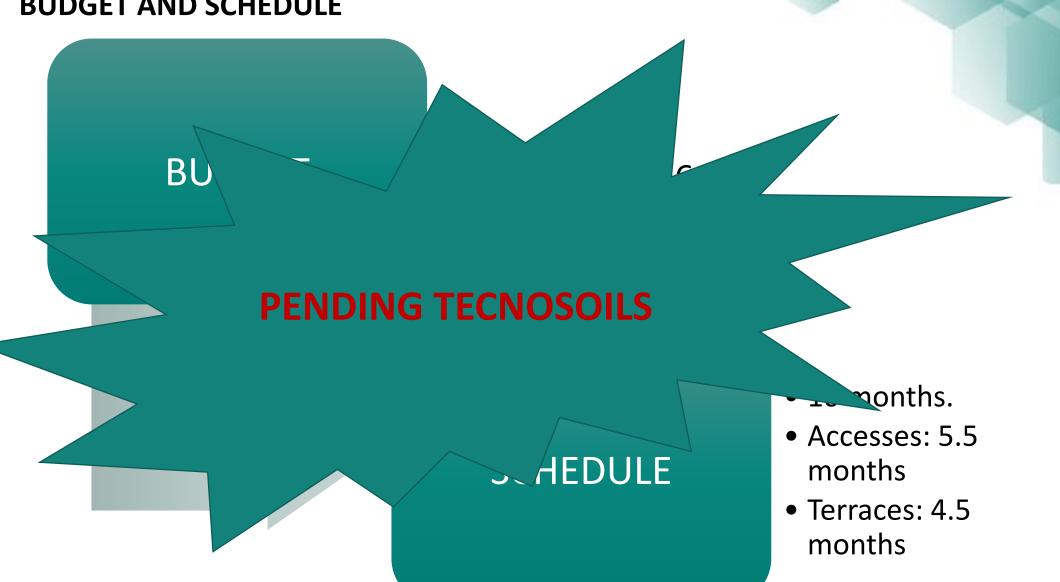
- Execution: choice of filling material, and compaction.
- Reinforcement protection against corrosion.

CORHIBA (6/10)





CORHIBA (7/710X)



CORHIBA (8/10)

BUDGET AND SCHEDULE

CORHIBA (9/10)

TERRACE

TECHNOSOILS

- PROMOTE THE WATER RESERVE
- IMPROVE THE AGROLOGICAL CONDITIONS, THINNER AT THE BASE TO FAVOUR THE INCREASE OF THE CAPILLARITY IN THE ROCK
- REGULATE THE POLLUTANT LOAD
- RECREATE A BACTERIAL AND FUNGAL CONSORTIUM IN THE SOIL AND IN THE VADOSE ZONE

VEGETATION

- COVER TO AVOID EROSION
- DEEP ROOTS TO REACH THE VADOSE ZONE
- ABILITY TO RETAIN AND/OR DEGRADE POLLUTANTS

CORHIBA (10/10)

TERRACE

UNIQUE STRATEGIC PROJECTS IN THE SITES AFFECTED BY HCH IN ARAGON

ACTIVITY (1975-1992)

BACKGROUND

• MANUFACTURE AND GENERATION OF WASTE DERIVED FROM LINDANE PESTICIDE (1989-1992 only commercial formulation not production)

SOILS CONTAMINATED

DECLARED

 RESOLUTIONS 2012 and 2020 GENERAL DIRECTORATE OF ENVIRONMENTAL QUALITY

SOURCE OF POLLUTION

ABANDONMENT AND DETERIORATION OF FACILITIES

• INDUSTRIAL RUIN

CHARACTERIZATION OF THE CONTAMINATION

LAYER 1: h<1 m

MAXIMUMS 94,86 HCH mg/Kg dry weight 55,62 HCH mg/Kg dry weight

LAYER 2: $1m \le h < 2m$

MAXIMUMS 74.730 HCH mg/Kg dry weight 27.268 HCH mg/Kg dry weight

LAYER 3: 2m ≤ h < 5m

MAXIMUS 397,9 HCH mg/Kg dry weight

HCH in GROUNDWATER

• is **EXCEEDED** by several orders of magnitude

HCH gas in AIR

are not exceeded

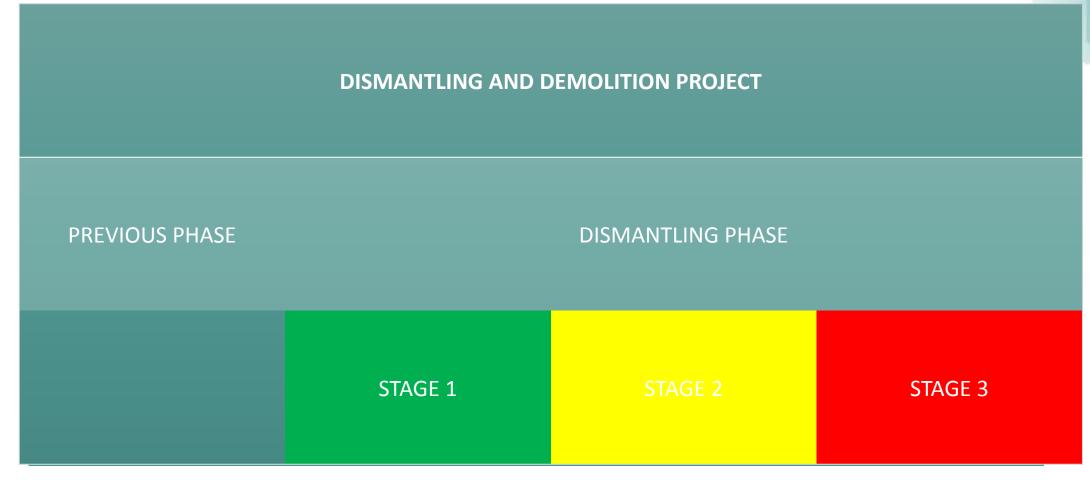
Particulate HCH AIR

are not exceeded

CHARACTERIZATION OF THE CONTAMINATION (walls)

180 m3 of paint and plaster

• 46 kg of HCH


1,020 m3 of bare block

• 10 Kgr of HCH

Edificio	Fachada	Catas	m2	Pintura exterior	Pintura interior	Enfoscado exterior	Enfoscado interior	Bloque
3	N	5	222,26	0				
	S	5	292,91					
Nave norte	E W	2	146,33				1	
wave norte	N	4	155,09 479,65					-
21	š	5	434					
	Ε	3	227.82					
Nave sur	w	3	183,1					
	N	2	95,43					
1	S	2	137,59					
	E	1	106,86					
macén ceste	W	2	127,26					
	N	1	59,32					
	S	1	59,31					
	E	2	61,7					
macén este	W	1	85,09				8 3	
	S	1	60,17					
	E	1	60,57 61,92					
Nave emissado	w	1	61,33	-				
	N	0	59,06					
	s	0	40,99				3	
-	E	0	17.89	_			-	
CTE	w	1	17,6	- 3			8 8	
	N	1	30,46	- 0				
	S	1	23,72					
	E	1	16,01	2 3			2	
EFRIG	w	1	17,23	- 10			8	
	N	0	9,29					
	S	1	6,75					
	E	0	6,28	36			Ø	
ECB	W	0	6,67					
	N	1	53,3				3	
	S	2	46,73	100			0	
	E W	0	89,39			c.		
EOFILAB	N	2	90,29 76,82	-				EST. HORM.
	S	0						EST. PICHWI.
1	E	0	95,41				3	
ECALD	W	0	82,12 79,54				4	
ECALD	N	0	21,8				0	
-	5	0	21,71	- 8			2 1	
1	E	1	67,27					
EBI	W	1	61,66				2	
	N.	0	41,04				8	
	S	1	28,52					
	E	2	86,29				8	\$ 1
ETMAM	w	1	87,58	3			8 1	
	N	0	7	-				
	S	0	5,7	8			3	
	E	0	11,73		-		3	
ESWC	w	1	15,01					
	N	0	6,51					
- 1	S	0	7,37 5,86	- 3			2	
C82	W	0	5,86 8,59				4	
	N	1	6,51					
1	S	0	7,37	-				
	E	0	5,86				2	
C83	w	0	8,59	8			ý	
	N	0	11,28					
	s	0	12,51		- 1		6	
	E	0	22,58	0			2	
EDEP2	W	1	22,63					
- 5	N	0	11,2		-		9	
	S	1	7,28	5 8			8	
120000000000000000000000000000000000000	£	0	24,65					
EDEP3	w	0	26,9	i made 0		137/2/3	1 - 2200	2000
		M ²	4.638	4.638	4.638	4.638	4.638	4.638
		M1	1029,57 55,55	4,6 5.4	4,6	46,4	46,4 21.3	927,5
Masa estimada de HCH (Kg) 55,55 Retirada mediante		Pulido y aspirado	Pulido y aspirado	Pulido y aspirado	Pulido y aspirado	Corte con "his diamante"		
				Inturado en condiciones	Triturado en condiciones	condiciones	Inturado en condiciones	Inturado en condiciones
Tratamiento 19			estancas	estanças	estancas	estances	estancas	
Tratamiento 29			Oxidación	Oxidación	Oxidación	Oxidación	41	
		Tratamiento 39		biorremediación	biomemediación	biorremediación	biorremediación	biorremediacio

DISMANTLING PHASE							
STAGE 1	STAGE 2	STAGE 3					
Dismantling auxiliary buildings lower platform	Dismantling of auxiliary buildings upper platform	Dismantling of process buildings					

CONTAINED IN HCH

SURFACE TO DEMOLISH: 3,337.82 m2

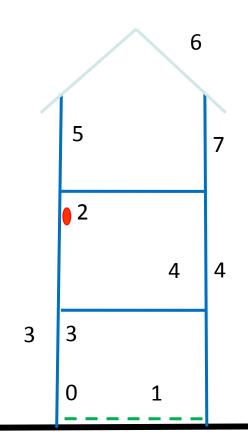
MAXIMUM HEIGHT: 20.25 m

VOLUME OF DEBRIS GENERATED: 1,217 m3

ESTIMATED VOLUME OF NON-HAZARDOUS: 1,020 m3

Old BAILIN LANDFILL: 541,66 Tn/day

ESTIMATED VOLUME OF HAZARDOUS PER HCH: 180 m3


ESTIMATED VOLUME OF ASBESTOS HAZARDS: 17 m3

DISMANTLING AND DEMOLITION OF THE OLD INQUINOSA FACTORY MAIN ACTIVITIES

- Horizontal shot blasting of floor vacuum waste packaging
- Sealing of the floor with non-slip waterproofing paint
- Dismantling facilities and connections-
 - Asbestos removal
- Painting of interior and exterior coatings with titanium oxide
- Shot blasting interior and exterior walls Aspiration Waste packaging
- Block removal, section by section using a grid of approximately 40 cm x 40 cm
- 6 Asbestos removal
- **7** Disassembly of structure

DISMANTLING AND DEMOLITION OF THE OLD INQUINOSA FACTORY PREVENTIVE AND CORRECTIVE MEASURES

REDUCE CONTAMINATION IN CONSTRUCTION ELEMENTS AND AMOUNT OF DANGEROUS WASTE

- Oxidative treatment through painting on vertical walls
- Shot blasting of altered surfaces, with the aim of separating contaminated materials from non-contaminated ones.

AVOID THE DISPERSION OF DUST

- Covering Canvases and panels of the openings
- Employment Nebulizers with microdrop in cort blog and mach
- Shot blasting, vacuuming, filtering and sealed packaging of contaminated areas of walls and screeds
- Protection and sealing waterproofing paint on screeds
- Crushing of the block at Bailín facilities
- Predictive model of atmospheric dispersion

AVOID DISCHARGES OF RUN WATER

- water treatment system installation
- Drainage network to minimize the entry of water into the work area.
- Minimize the use of water inside the facilities

HEALTH & SAFETY

- Hygienic and decontamination facilities (Black & White)
- Application of normative in asbestos removal

CONDITIONS FOR DETERMINATION OF STOP VALUES BY ATMOSPHERIC DISPERSION

Mass per cubic meter of air of suspended particles

Measurements can be made continuously.

Composition of the particles suspended in the air

minimum of six days until results.

Stop values

based on measurements of the mass of the particles.

Particle dispersion reference values

2006, WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide


PM10: $50 \mu g/m^3$ PM 2,5: $25 \mu g/m^3$

DISMANTLING AND DEMOLITION OF THE OLD INQUINOSA FACTORY STOP THRESHOLDS

11 μg/m3 for PM10 concentration (mass)

1.5 x 10-5 μg/m3 for total HCH concentration.

stop level

40 μg/m3 mass of PM 10.

5.6 x10-5 µg/m3 mass of HCH in air.

EPA (CalEPA12)

• 0.3 μg/m3 (**5,300 times higher**)

NATICH13, OSHA14 and Ontario Air Quality Guidance15, Canada

• 5 μg/m3 (**89,000 times higher**).

BUDGET AND SCHEDULE

UNIQUE STRATEGIC PROJECTS IN THE SITES AFFECTED BY HCH IN ARAGON

SECURITY CELL

• 2,706,684.10 €

CORHIBA

•1,155,007.56 **€**


THE OLD INQUINOSA FACTORY

•4,288,835.31€

UNIQUE STRATEGIC PROJECTS IN THE SITES AFFECTED BY HCH IN ARAGON

SPECIAL THANKS

LAURA MONGE

ADRIAN VISANZAY

THE WHOLE TEAM OF SARGA

THANK YOU FOR YOUR ATTENTION

smvelilla@aragon.es

https://descontaminacionlindano.aragon.es

