"CAN LOW TEMPERATURE THERMAL DESORPTION BE CONVERTED TO DESTRUCTION AND BE MORE SUSTAINABLE THAN TRADITIONAL INCINERATION?"

Søren Eriksen, Krüger A/S Niels Ploug, Krüger A/S Steffen Griepke Nielsen, TerraTherm Inc.

Project Manager In Situ Thermal Solutions

14th International HCH and Pesticides Forum

Zaragoza, Spain

TRADITIONAL THERMAL REMEDIATION WHAT IS IT?

- Source zone technology
- Employs heat to volatilize organic chemicals
- Chemical and water vapors are:
 - Captured by vacuum
 - Brought to the surface
 - Treated before discharge

Separate CoCs from soil

THERMAL CONDUCTIVE HEATING (TCH) OPERATING TEMPERATURES

THERMAL REMEDIATION DO WE REALLY WANT TO EXTRACT THE COCs?

Traditional approach: Heat fast and get it out!

We have references on Dioxin, PCB, PCP, PFAS, Mercury, Parathion, Lindane and many others

But is it attractive to extract all the contaminants?

- Highly toxic compounds
- Solid at condenser temperature compounds
- Flammable or reactive compounds

Can longer residence time lead to destruction of contaminants?

Substantially lower energy costs compared to high temperature incineration of soil (80-88% reduction)

Examples

- Mixed (Mercury, pesticides, sulphur)
- Dioxin
- PFAS

KRÜGER • VEOLIA

MIXED CONTAMINATION PARATHION, MERCURY SULFIDE AND EXCESS SULFUR

Chemical reaction is required to address mercury sulfide

$$HgS + O_2 => HgO + SO_2$$

 $HgO => Hg + \frac{1}{2}O_2$

Parathion

Highly toxic - TWA 0.05 mg/m³
Thermally unstable
Flammable decomposition product

Sulfur

Flammable vapors

Solid at treatment plant temperature - may block pipes

Not a remediation target, but will prevent evaporation of mercury

MIXED CONTAMINATION PILOT SCALE APPROACH

Destroy parathion, oxidize sulfur and mercury sulfide, decompose mercury oxide Activated carbon filtration, Sulfur impregnated for vapor phase Target temperature 350 °C

Slow controlled heating to slowly evaporate/decompose parathion at 80-110 °C Superheating extraction stream to decompose extracted vapors Monitoring LEL

In soil oxidation of sulfur at 220-250 °C - neutralisation of sulfur dioxide in alkaline scrubber

Ventilation at 250-350 °C to oxidize mercury sulfide Decomposition of mercury oxide at 350 °C

Test conducted in sealed steel box with nitrogen blanket option

MIXED CONTAMINATION PILOT SCALE RESULTS

99.98% destruction of parathion

Soil concentration of all organic contaminants (mainly paranitrophenol from parathion decomposition) below detection level at 200 °C soil temperature.

Mercury remained above 3 mg/kg at 350 °C Mercury soil concentrations below 2 mg/kg at the end of treatment at 500 °C

Considerable HSE improvement by managing 10 g of parathion in the treatment plant rather than 50 kg

Considerable operational improvement by managing SO_x rather than elemental sulfur

LEL proved manageable by controlling heating rate and ventilation

AGENT ORANGE SPILL DIOXINS, PHENOXY HERBICIDES AND JET FUEL

Dioxins

Highly toxic

Persistent

Reason for remediating the soil

Lower priority contaminants

Phenoxy herbicides, primarily 2,4,5-T and 2,4-D

Jet fuel and other volatile and semi volatile contaminants

AGENT ORANGE SPILL LARGE SCALE APPROACH

Heating strategy

Separation by evaporation from the soil

Heat up as fast as practically and economically advantageous

Target treatment temperature 335 °C

3 weeks at temperature

Liquids and vapor treatment plant

Condensation, macro-porous polymer extraction and activated carbon

Two phases 45000 m² each

AGENT ORANGE SPILL LARGE SCALE RESULTS

Dioxins in soil remediated to 9 ppt TEQ in phase one Dioxins in soil remediated to 0.2 ppt TEQ in phase two

Other organic contaminants were removed below detection limits

Slower heating stage one achieved 90-97% dioxin destruction Faster heating stage two achieved 60-75% dioxin destruction

Other organic contaminants contributed to activated carbon consumption

PFAS LAB SCALE TEST OF SOILS FROM FIRE TRAINING GROUNDS

Round one feasibility testing: Heat and ventilate Target treatment temperature 250 - 500 °C

PFAS total below 1 ug/kg (400 °C for 2 weeks)
Only PFOS and PFHxS are detected in treated soil

Some precursors are recovered in high yield

All long chain PFAS are decomposed

Online mass spectrometry confirm perfluorinated aliphatic compounds

No commercial analysis is available for perfluorinated aliphatic compounds

PFAS LAB SCALE TEST OF PFOS SPIKED SAND

Round two optimization of mineralization

Slow heating - minimal ventilation

600 °C decomposition reactor - 3 different catalysts

25% soluble inorganic fluoride (sand artificial soil and alkaline scrubber)
75% insoluble fluorine (XPS suggest inorganic minerals)
0.05% PFOS found in scrubber and soil
Mass balance adds up - all fluorine accounted for

DOING CHEMISTRY DURING THERMAL REMEDIATION CONCLUSION

By observing contaminant thermal stability and balancing evaporation and decomposition it is possible to conduct controlled high efficiency degradation during thermal remediation

Degradation can improve health and safety

Chemical conversion can enable remediation of non volatile contaminants

Mineralization will reduce activated carbon usage

Fast extraction is not necessarily optimal

A heated extraction system can contribute to degrading extracted vapors

DOING CHEMISTRY DURING THERMAL REMEDIATION OUTLOOK

In soil mineralization can minimize usage of sorbents as well as the need for waste handling

The energy consumption of a 350 °C high temperature thermal remediation is $\frac{1}{8}$ to $\frac{1}{8}$ of high temperature incineration while the soil can be treated on site

A few words of caution:

Keep an eye for degradation products and make sure to monitor them Consider mass balance check to account for all of the contaminant mass Make sure that no contaminants worse than the original ones are formed

Mr. Søren Eriksen
Project Manager
In Situ Thermal Solutions
soe@kruger.dk
+45 6037 0738

THANK YOU

Mr. Niels Ploug Sales & Product Manager In Situ Thermal Solutions nip@kruger.dk +45 2048 5963

Please, feel free to reach out to us here at the conference for more details.