

Mercury and HCH issues at chlor-alkalifacilities

14th International HCH and Pesticides Forum – Session 1: Dealing with Chlor Alkali and Mercury

Welcome

Our Speaker

Mr Guido van de Coterlet

- Consultant Contaminated Sites and Hazardous wastes
- With TAUW by for 17 years
- Experienced in both training and fieldwork at contaminated sites and working with hazardous wastes

TAUW

- Technical Consultancy of the Union of Water Boards
- Founded 1928
- Overall 1200 staff, in 6 European countries
- Involved with POPs and HCH since the 1990ties
- Proud sponsor of the 14th HCH forum

Introduction

Minamata and Stockholm Conventions

Minamata Convention Objective:

 To protect the human health and the environment from anthropogenic emissions and releases of mercury and mercury compounds

Relevant actions:

- Chlor-alkali production facilities need to be phased out by 2025
- Mercury contaminated sites should be managed in an environmentally sound manner

Stockholm Convention Objective:

 To protect human health and the environment from persistent organic pollutants (POPs)

Relevant actions:

 Ensure that stockpiles and wastes consisting of, containing or contaminated with POPs are managed safely and in an environmentally sound manner (Article 6)

Chlor-alkali facilities

Chlor-alkali facilities and HCH

- Mercury cell technology was, until a decline set in after 1972, the main technology for the production of caustic soda
- The overall process involves a flow of purified saturated brine through an elongated, slightly inclined trough between a shallow co-current stream of mercury and an assembly of electrodes (graphite or metal)
- During production of caustic soda, Cl₂ is produced
- Large quantities of chlorine were needed for the production of HCH

 photo chlorinating benzene
- Production of HCH at chlor-alkali facilities was often a logical and easy to implement step

Waste and environmental issues

Environmental issues at mercury cell Chlor-alkali HCH production sites

- Photo chlorinating benzene results in technical HCH

 approximately 14 % γ-HCH (Lindane) and 86 % inactive isomers
 - Initially technical HCH was used as a pesticides. In later years, only the active isomer was used □ Resulting in approximately 8 tons of waste for each ton of Lindane
- Graphite anodes in the mercury cells would slowly wore away and needed replacing □ anodes are saturated with mercury and, due to suboptimal conditions for chlorine formation, could be source of dioxins
- Although on paper a closed system, on average chlor-alkali facilities lost several tonnes of mercury per year
 - Through evaporation
 - Brine sludges
 - Waste water
- Asbestos
- PCB

Waste and environmental issues

Where to look for at mercury cell Chlor-alkali HCH production sites

- Mercury is found:
 - At and underneath the Electrolysis plant
 - In the wastewater network
 - At the brine regeneration facilities
 - At the disposal of sludges
- HCH is found
 - In any dump of wastes
 - In the areas where storage and handling took place
- Asbestos is found
 - In most buildings
 - In dumpsites
- Dioxins
 - Are present in spend graphite anodes in dumpsite

So where is the pollution?

Brine and Hg-Na amalgam treatment

Brine sludges – contaminated and(illegally) disposed in vincinity – 500 mg/kg Hg

Concrete floors saturated with mercury – up to 80.000

mg/kg

Roofs often made from asbestos – absorbs mercury

High mercury concentrations in walls. Higher in the building – higher concentrations Up to 5.000 mg/kg

HCH wastes, pure HCH with mostly inactive isomers mixed with other wastes

Groundwater contaminated with mercury, chlorobenzens and HCH – Hg concentrations up to 1100 ug/l

- HCH concentrations > 10.000 ug/l
- High concentrations of (Chloro)benzenes

Expect the unexpected

No Plan Survives First Contact With the Enemy!

- Mixed HCH and Mercury contaminated wastes
 — where sludges have been dumped together with HCH wastes
- Mixed mercury and asbestos □ roofs of the buildings, where mercury has evaporated into the building materials
- Mixed HCH and Asbestos □ where asbestos has been dumped in HCH waste piles
- Mixed dioxins and mercury □ Graphite anodes

Various ashes encountered during excavation

Heavily impacted constructions materials

Typical mercury impacted materials. More sandy in nature, slightly white/gray

Built variability into your execution

- A good balance between minimising mixing of different soil/ waste classes and practically feasible
- Minimise risk of non-acceptance by treatment facility at the gate
- Strategy should be understandable and compliable
- Optimize project process without compromising on project aims
- Includes flexibility for surprises during excavation (e.g., dumped barrels, mercury contaminated waste)

Excavation of soil or waste

Excavation of soil

- For each layer; visual inspection of soil.
- Mixing of materials should be prevented by should also remain practical.
- Distinct soil type over an area smaller than 5 m²
 - Individual sample (25-50, 50-57 cm below original surface or different soil properties)
 - Duplicate XRF-reading
- Distinct soil type over an area larger than 5 m²
 - Composite consisting of 5 individual samples for every 20 m²
 - Duplicate XRF-reading
- Excavation of soil for a minimum depth of 20 cm and maximum depth of 50 cm.

Example of excavation strategy

- Vegetation layer needs to be removed based on XRF-readings
- Removal in thin layers of visual clean soil
- Measure visually contaminated soil before proceeding excavation
- Mercury containing waste (or soil) to different depot
- Soil with chlorine content from 100 ppm to 8,000 ppm measured with XRF is going to a different depot
- Pure waste will be immediately packaged

Cross-section trial pit Lot 1

Create tabular form of possible depots based on disposal/treatment options

Soil	Chloride concentration Low < 100 ppm	Chloride concentration low to middle (100 to 8,000 PPM)	Chloride concentration midle to High (8,000 PPM to 55,000 PPM)	Chloride concentration High (> 55,000 PPM)
Heavy Metals < Class Industry (i.e., acceptance level thermal treatment)	"Clean" soil □ Depot 1 outside the tent	Contaminated soil □ Depot 2 inside the tent	Contaminated soil □ check for concentrations with analysis for HCH - To ATM? - To Tredi? Depot 5	Contaminated soil □ repack as wastes
Metals > 1 * thermal treatment /incinerator acceptance limits; Metals < 2 * thermal treatment /incinerator acceptance limits	Contaminated soil Depot 3	Contaminated soil Depot 3	Contaminated soil - To ATM? - To tredi? - Remain on site Depot 6	Contaminated soil □ to be analyzed - To Tredi - Remain on site Repack as wastes
Heavy Metals > 2 x thermal treatment /incineratoracceptance limits	Contaminated soil -> cannot be included in the project □ depot 4	Contaminated soil cannot be included in the project depot 4	Contaminated soil -> cannot be included in the project Depot 7	Contaminated soil -> cannot be included in the project □ repack as wastes

THANK YOU FOR YOUR ATTENTION

Guido van de Coterlet +31 61 16 43 67 2 Guido.vandecoterlet@tauw.com www.tauw.com

