

ESCOBAR-ARNANZ, JUAN

Environmental consultant

AECOM

DESIGN, DEVELOPMENT AND SCALE-UP OF AN AEROBIC *IN-SITU*BIOREACTOR FOR REMOVAL OF HCH IN GROUNDWATER

Escobar-Arnanz J.¹, Berganza J.², Brettes P.², Encinas R.¹, Alonso T.¹, Alcalde D.¹, Fernández J.³

¹AECOM. Environment and Sustainability Department. Remediation. Madrid, Spain

²GAIKER Technology Center. Zamudio. Spain

³Department of Agriculture. Livestock and Environment. Aragon's Government. Zaragoza, Spain

POSSIBLE BIOREMEDIATION TECHNIQUES

POSSIBLE BIOREMEDIATION TECHNIQUES

METABOLISM OF MICROORGANISMS

BIOREMEDIATION BASED ON MICROORGANISMS

BIOREMEDIATION BASED ON MICROORGANISMS

BIOREACTOR AS REMEDIATION SYSTEM

A bioreactor is a biotechnological device capable of producing a controlled and isolated environment that guarantees and maximizes the growth of a culture of microorganisms that carry out the degradation of the

contaminants of interest in the aquifer

Amendments

BIOREACTOR CONFIGURATIONS

In-situ bioreactor

Ex-situ bioreactor

Key. K. C. et. al. – RS – 23 (2013) 55-84

BIODEGRADATION PATHWAYS OF HCH

Aerobic degradation pathway

Anaerobic degradation pathway

$$\begin{array}{c}
CI \\
CI \\
CI \\
CI
\end{array}$$

$$\begin{array}{c}
CI \\
CI \\
CI
\end{array}$$

$$\begin{array}{c}
CI \\
CI
\end{array}$$

FACTORS AFFECTING BIOREACTOR PERFORMANCE

SCALING PROCESS

Increasing volume and sequential optimization of parameters...

SCALING PROCESS

Increasing volume and sequential optimization of parameters...

Study, design and development of bioreactor for the *in-situ* remediation of groundwater in the Bailin aquifer

2021

Study, design and development of bioreactor for the *in-situ* remediation of groundwater in the Bailin aquifer

2021 2024

1

Characterization of inoculum candidates

☐Sample collection

☐Sample preparation

☐Sample characterization

- Total biomass
- Specialized biomass
- Diversity and activity
- Toxicity

2

Additional characterization of inoculum candidates

□Specialized biomass

☐Mixed cultures (Candidate + P168)

3

Biostimulation and bioaugmentation experiments

 \square Biostimulation

- •P168 abiotic control
- •P168 biotic control
- •P168 + nutrients/amendments

☐Bioaugmentation

- •P168 + Pool1 + nutrients/amendments
- •P168 + Pool2 + nutrients/amendments

4

Lab-scale bioreactor

 $\square Design$

 $\label{eq:variable} \square \mbox{Variable adjustment}$

□Optimization

5

Field biorreactor

Design

□Construction □

☐Field test optimazed inoculum

Laboratory

Aerobic

Anaerobic

aecom.com

Study, design and development of bioreactor for the *in-situ* remediation of groundwater in the Bailin aquifer

Aerobic

Anaerobic

Laboratory

Study, design and development of bioreactor for the *in-situ* remediation of groundwater in the Bailin aquifer

2021 2024

1

Characterization of inoculun candidates

☐Sample collection

Sample preparation

☐Sample characterization

- Total biomass
- Specialized biomass
- Diversity and activity
- Toxicity

2

Additional characterization of inoculum candidates

Specialized biomass

☐Mixed cultures (Candidate + P168)

3

Biostimulation and bioaugmentation experiments

☐Biostimulation

- •P168 abiotic control
- •P168 biotic control
- •P168 + nutrients/amendments

☐Bioaugmentation

- •P168 + Pool1 + nutrients/amendments
- •P168 + Pool2 + nutrients/amendments

4

Lab-scale bioreactor

Design

 $\label{eq:variable} \square \mbox{Variable adjustment}$

□Optimization

5

Field biorreactor

Design

□Construction

☐Field test optimazed

Circulation

1 1/2-in Schedule

Laboratory

Aerobic

Anaerobic

Study, design and development of bioreactor for the *in-situ* remediation of groundwater in the Bailin aquifer

2021 2024

1

Characterization of inoculum candidates

DSample collection

☐Sample preparation

☐Sample characterization

- Total biomass
- Specialized biomass
- Diversity and activity
- Toxicity

2

Additional characterization o inoculum candidates

■Specialized biomass

☐Mixed cultures (Candidate + P168)

3

Biostimulation and bioaugmentation experiments

□Biostimulation

- •P168 abiotic control
- •P168 biotic control
- •P168 + nutrients/amendments

Bioaugmentation

- •P168 + Pool1 + nutrients/amendments
- P168 + Pool2 + nutrients/amendme

4

Lab-scale bioreactor

□Variable adjustment

□Optimization

5

Field biorreactor

Design

□Construction

☐Field test optimazed inoculum

Laboratory

Aerobic

Anaerobic

aecom.com

14th International HCH and Pesticides Forum

BIOREACTOR DEVELOPMENT: WORKFLOW

LOCATION

BIOREACTOR CONFIGURATION

¿Why an in-situ bioreactor?

- Fractured bedrock, impact in groundwater
- Areas with ↓ contaminant concentrations
- Low hidraulic connectivity of siltstone layers
- More stable environment

BIOREACTOR DEVELOPMENT: TIMELINE

2021 Additional characterization of Lab-scale bioreactor i **Field biorreactor** Characterization of inoculum **Biostimulation and** inoculum candidates Design candidates bioaugmentation experiments Design ☐Specialized biomass □Variable adjustment ☐Sample collection □ Biostimulation □Construction ☐Mixed cultures (Candidate + P168) □Optimization •P168 abiotic control ☐Sample preparation ☐Field test optimazed inoculum ☐Sample characterization •P168 biotic control Total biomass •P168 + nutrients/amendments Specialized biomass □ Bioaugmentation •P168 + Pool1 + Diversity and activity nutrients/amendments 1 1/2-in Schedule Toxicity 40 PVC Blank •P168 + Pool2 + nutrients/amendments Bio-Sep® Beads

2024

Laboratory

13 indigenous samples

Different nature (water, soil, sediment and sludge)

Creation of internal library for comparison

13 indigenous samples

Different nature (water, soil, sediment and sludge)

Creation of internal library for comparison

13 indigenous samples

Creation of internal library for comparison

STEP 2: ADDITIONAL CHARACTERIZATION OF INOCULUM CANDIDATES

Samples selected for biostimulation experiments

Samples selected to be used as co-inoculants

STEP 3: BIOSTIMULATION AND BIOAUGMENTATION EXPERIMENTS

CONCLUSIONS

Implementation of a bioreactor as remediation system is not a straightforward process that requires a deep understanding of the medium and factors affecting bioreactor performance

The design of a bioreactor accounts for a sequential scaling process where parameters may be carefully optimized and controlled to ensure a proper system efficiency

The development of an efficient bioreactor is a long-term process where microbial communities may be gradually adapted to environmental site conditions in order to ensure microbial growth and improve rates of biodegradation

Interesting samples have been found in the Bailin aquifer to continue with the scaling process for the potential implementation of a field bioreactor

THANK YOU FOR YOUR ATTENTION

juan.escobararnanz@aecom.com

