

ASSISTED-BIOREMEDIATION FOR THE DEGRADATION OF ORGANOCHLORINE COMPOUNDS

González J, Mancho C, Gil-Díaz M, García-Gonzalo P, Lobo M.C*.

IMIDRA, Finca "El Encín" A-2, km 38,2. 28805 Alcalá de Henares (Madrid)

* carmen.lobo@madrid.org

SOIL

- Finite
- Non-renewable
- Processes: Slow formation and regeneration
- Buffering capacity

Source: FAO and UNEP. 2021. Global assessment of soil pollution. Summary for policy makers. Rome, FAO

CONTAMINATION

- Environmental disruption.
- Decrease of the soil's potential capacity.
- Inorganic pollutants: such as heavy metals and salts.
- Organic pollutants:
 hydrocarbons, organochlorine compounds, emerging
 pollutants (pharmaceutical compounds, personal hygiene
 compounds, etc.).

Degradation > >

Partial or total loss of productivity and functions.

SOIL

- Finite
- Non-renewable
- Processes: Slow formation and regeneration
- **Buffering** capacity

Source: FAO and UNEP. 2021. Global assessment of soil pollution. Summary for policy makers. Rome, FAO

CONTAMINATION

- Environmental disruption.
- Decrease of the soil's potential capacity.
- Inorganic pollutants: such as heavy metals and salts.
- Organic pollutants:
 hydrocarbons, organochlorine compounds emerging
 pollutants (pharmaceuticai compounds, personal hygiene
 compounds, etc.).

Degradation > >

Partial or total loss of productivity and functions.

14th International HCH and Pesticides Forum

Lindane (γ-hexachlorocyclohexane)

Insecticide banned in all its chemical formulations.

Production, use and commercialization are forbidden.

Harmful to human **health** and **environment**.

Large-scale production in the 70's and 80's.

Improper manufacturing, handling and waste management practices.

Contaminated areas

Remediation strategies

Bioremediation

BIOREMEDIATION

- -Microorganisms
- -Plant and associated microorganisms (rhizosphere)

Pollutants Removal

ASSISTED BIOREMEDIATION

ORGANIC MATTER SOURCES

Biostimulation

Synergistic or antagonistic effect with soil autochthonous microbial population

-Supply exogenous microbial population

OBJETIVE

To evaluate the use of a compost from sewage sludge and pruning wastes to enhance bioremediation in a soil polluted with organochlorine compounds.

MATERIALS AND METHODS

Polluted soil from Sabiñanigo (Huesca)

67 mg/kg HCH

1,2,4-TCB

α-HCH

β-НСН

Treatments

NATURAL ATTENUATION (NA) BIOSTIMULATION:

Sewage sludge and pruning waste compost (**B-CP**)

NPK (15:15:15) (47 kgN/ha) mineral fertilizer (**B-NPK**)

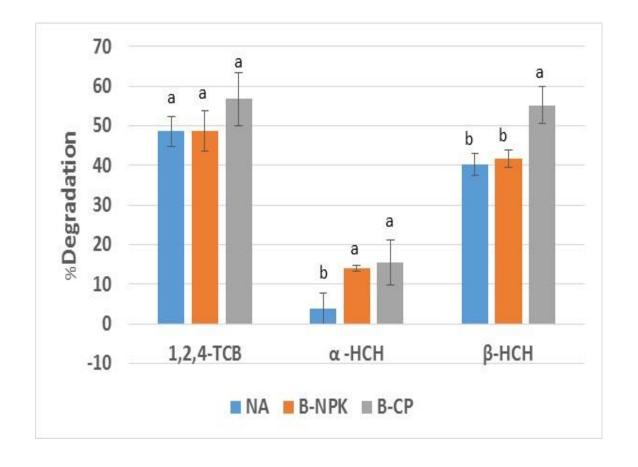
Soil and compost characterization

		E.C	M.O	N	Р	Ca	Mg	Na	K	Pb	Cd	Cu	Ni	Zn	Cr
	рН	dS/m	%		mg/kg										
S-Z1	8,2	0,4	1,09	0,09	8	3737	146	30	187	25	0,4	14	20	154	25
СР	6,9	18,2	33,9	3,32	1067	13267	1494	765	1714	35	<ld< th=""><th>111</th><th>17</th><th>322</th><th>44</th></ld<>	111	17	322	44

MATERIALS AND METHODS

Incubation test: 60 days

Temperature:26°C Humidity (60% of soil water holding capacity) % Degradation of 1,2,4-TCB, α -HCH, β -HCH \Longrightarrow GC/MS


Soil quality ——— Soil enzymatic activities (ISO 20130, 2018)

Soil phytotoxicity: Germination test (Zucconi et al., 1985)

RESULTS AND DISCUSSION

Incubation test

Degradation of organochlorine compounds

60 days

1,2,4-TCB

β-НСН

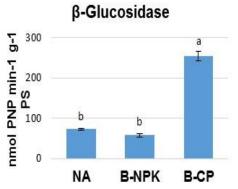
B-CP higher degradation values

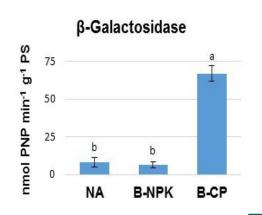
AN ≈ B-NPK

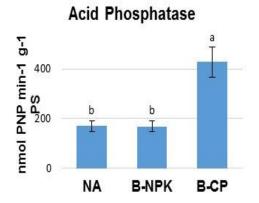
α-HCH

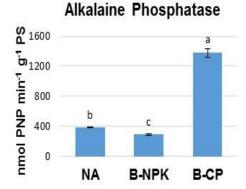
Low biodegradation

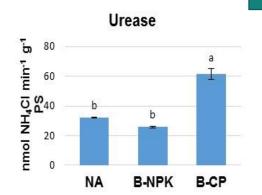

B-NPK ≈ B-CP > NA

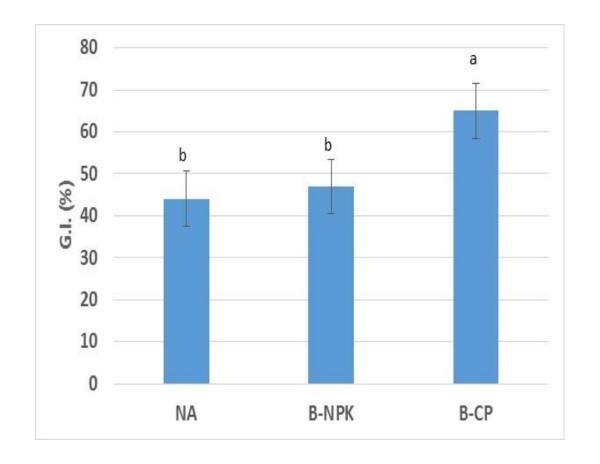



RESULTS AND DISCUSSION








- CP promotes biostimulation of soil microbiota
- Incorporation of exogenous microorganisms
- Reduces pollutants availability due to organic matter imput
- **B-NPK:** No effect

HCH and Pesticides

RESULTADOS Y DISCUSIÓN

Germination test:

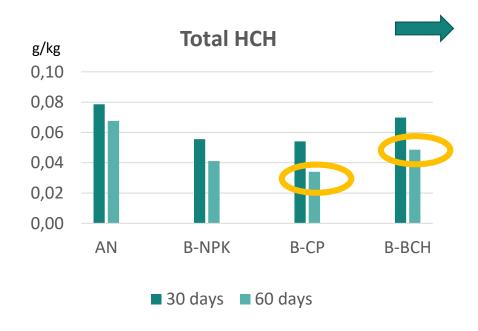
IG< 50 : Toxicity

IG: 50-80: Moderate toxicity

IG> 80: No toxicity

High toxicity

Moderate Toxicity


Assays in progress

Different organic matter sources

Degradation at 90 y 120 days

B-BCH: Treatment with **biochar** from olive tree residues

- HCH degradation increases with incubation time.
- Best results are observed in compost treatments.

Phytoremediation

Rosa canina L. Salix alba L Populus x canadensis "clon I-214"

CONCLUSIONS

The **organochlorine compounds** detected in the soil undergo a degradation process under the evaluated conditions.

The natural attenuation (NA) achieves degradations of around 45%, not observing a positive effect when providing soluble nutrients (B-NPK).

Application of compost (**B-CP**) induces an increase in degradation to values around **57%** in the **60 days** of incubation, probably due to the double effect of biostimulation due to the contribution of nutrients and organic matter and a **potential bioincrease** due to the incorporation of exogenous microorganisms.

The application of compost shows a positive effect in the recovery of the soil functionality, observing increases in the biological activity of the soil as well as the decrease in its phytotoxicity.

Thank you for your attention

* carmen.lobo@madrid.org

This study has been funded by Emgrisa (2022).

