

Margarita Salas Postdoctoral Fellow

Universidad Complutense de Madrid

PRELIMINARY STUDY OF THE BIOREMEDIATION CAPACITY OF HORSE AMENDMENT IN SOILS CONTAMINATED WITH HCHS

Santos, A., Checa-Fernández, A., Domínguez, C.M., Martín-Sanz, J.P., Valverde-Asenjo, I., Quintana-Nieto, J.R., Fernández-Sanjulián, J., Chicaiza-Guerra, K.Y.,

This work was supported by the Madrid Autonomous Region through the CARESOIL R+D PROGRAMME (Ref. S2018/EMT-4317), co-financed with the European Social Fund and the European Regional Development Fund of the Community of Madrid, by the R+D+I project of the Spanish Ministry of Science and Innovation REMSURFOX (Ref. PID2019-105934RB-100), and Juan Pedro Martín Sanz granted by the European Union-NextGenerationEU through the Ministry of Universities and the call CT31/21 of the UCM.

- Use of pesticides led to an increase in crop yields
- Technical Hexachlorocyclohexane (HCH) and the γ-HCH (lindane) isomer after were between the most widely used
- In 2001 α -HCH, β -HCH and γ -HCH ->Persistent Organic Pollutants (POPs)
- Effects derived from the use of the soil, large amount of waste generated in the process and its management, sometimes negligently
- Bioremediation as an effective decontamination technique.
- Initial evaluation of the bioremediation capacity of organic horse amendment on soils with different technical HCH concentrations.

MATERIAL & METHODS

Study area

- Incorrect management of HCH wastes
- Between 1975-1992 115,000-160,000 tons of HCH wastes were dumped
- Alternating layers of red shale and subvertical Tertiary sandstone, hydrogeologically connected to the Gállego River
- Predominant soils: cambisols, leptosols, calcisols and regosols

MATERIAL & METHODS

Four treatments

Soil High Contamination (HC)

Soil Low Contamination (LC)

Soil
High Contamination +
Horse Amendment (5%)
(HC-HA)

Soil
Low Contamination + Horse
Amendment (5%)
(LC-HA)

Initial caracterization: pH, TOC, Pav and NH₄⁺

Temporal evolution Days: 0-1-7-55 il biological activi

Carbon cycle:

β-glucosidase activity Phenoloxidase activity

Nitrogen cycle:

Arylamidase activity
Urease activity

Phosphorus cycle:

Phosphatase activity

Living microorganisms **Dehydrogenase activity**

HCH isomers

α-HCH β-HCH δ-HCH ε-HCH γ-HCH

RESULTS & DISCUSSION

Soil parameters	НС	НС-НА	LC	LC-HA
рН	8.29	8.00	8.30	8.04
Total Organic Carbon (TOC) (%)	0.93	2.24	0.49	3.32
Available P (Pav) (mg/kg)	39.5	140	24.1	142
NH ₄ ⁺ (mg/kg)	16.2	41.2	13.8	58.2

RESULTS & DISCUSSION-Soil parameters

Soil parameters	НС	НС-НА	LC	LC-HA
рН	8.29	8.00	8.30	8.04
Total Organic Carbon (TOC) (%)	0.93	2.24	0.49	3.32
Available P (Pav) (mg/kg)	39.5	140	24.1	142
NH ₄ ⁺ (mg/kg)	16.2	41.2	13.8	58.2

HA decreased pH 0.3

HA increased Pav 3.5-5.9 times

● HA **increased TOC** 2.4-6.8 times

HA increased NH₄⁺ 2.5-4.2 times

RESULTS & DISCUSSION-Biological activity

RESULTS & DISCUSSION-HCH isomers

High Contamination

- Horse amendment decreased concentration of HCH isomers
- β-HCH

Low Contamination

- Concentrations < 0.5 ppm

- 1) Organic horse amendment increased nutrient availability in soils
- 2) Organic horse amendment **stimulated soil enzyme activities**
- 3) Soils with organic horse amendment shown an **effective degradations** of **HCH isomers**
- 4) Reduction of HCH isomers did not reach an asymptote at the end of the experiment

THANK YOU FOR YOUR ATTENTION

juanpmar@ucm.es

This work was supported by the Madrid Autonomous Region through the CARESOIL R+D PROGRAMME (Ref. S2018/EMT-4317), co-financed with the European Social Fund and the European Regional Development Fund of the Community of Madrid, by the R+D+I project of the Spanish Ministry of Science and Innovation REMSURFOX (Ref. PID2019-105934RB-I00), and Juan Pedro Martín Sanz granted by the European Union-NextGenerationEU through the Ministry of Universities and the call CT31/21 of the UCM.