

KUNTZE, KEVIN Lab Manager

SOURCE ALLOCATION AND DEGRADATION EVALUATION OF HCHS WITHIN A CONTAMINATED AQUIFER USING COMPOUND-SPECIFIC STABLE CARBON ISOTOPE ANALYSIS (CSIA)

Kuntze, K., Richnow, H., Fischer, A.

How to assess HCH-contaminated sites

Who was this and how many?

Is degradation taking place?

Can degradation be stimulated?

Compound-specific Stable Isotope Analysis (CSIA)

What are isotopes

...atoms of an element with the same number of protons but different numbers of neutrons

For example Carbon:

= 0.96% to 1.16%

= 98.84% to 99.04%

Isotope ratio

²H/¹H ³⁷CI/³⁵CI ¹⁵N/¹⁴N

measured via isotope ratio mass spectrometry (IRMS)

stable isotopes

synthetic

radioactive isotope

p	1	2	3	4	5	6	7	8
. //	Н	He	Li	Be	В	С	N	0
n	Number of Protons							
0	¹ H							
1	D	³ He				0.01		
2	Т	⁴ He	⁵ Li	⁶ Be		8C		
3		⁵ He	6Li	⁷ Be	⁸ В	9C		
4		⁶ He	₹Li	⁸ Be	⁹ B	¹⁰ C	¹¹ N	
5			⁸ Li	⁹ Be	¹⁰ B	¹¹ C	¹² N	¹³ 0
6		⁸ He	⁹ Li	¹⁰ Be	¹¹ B	¹² C	¹³ N	140
7				¹¹ Be	¹² B	¹³ C	14 _N	¹⁵ O
8			¹¹ Li	¹² Be	¹³ B	¹⁴ C	15 _N	160
9					¹⁴ B	¹⁵ C	¹⁶ N	¹⁷ 0
10				¹⁴ Be	¹⁵ B	¹⁶ C	17 _N	180
11						¹⁷ C	18 _N	¹⁹ 0
12					¹⁷ B	¹⁸ C	¹⁹ N	²⁰ O
13						¹⁹ C	²⁰ N	210
14							²¹ N	²² 0
15							***	²³ O
16								240

W

Why do I need to analyze them (2)

Isotope signature of the primary compound

 $\delta^{18}O = +2 \% SMOW$

¹³C-HCH

 $\delta^{15}N = +7 \% AIR$

FINGERPRINT – Source Identification

www.isodetect.de

Field site: HCH-contaminated aquifer

- 1. Can source zones of HCHs be confirmed by CSIA?
- 2. Does in situ degradation of HCHs take place and to which extend?

δ -HCH

Former production facilities at well A

Former HCH-dump at wells D/E

Former storage depot

Degradation

Improved conceptual site model due to CSIA

Quantification of pollutant biodegradation

1. Order degradation rate constant

δ-HCH: 19×10^{-3} 6×10^{-3} α-HCH: 10×10^{-3} 3×10^{-3}

β-HCH : 37 x 10⁻³

11 x 10⁻³

Conclusions

- CSIA confirmed different source zones at the investigated field site
- CSIA provided evidence of HCH degradation in the investigated aquifer
- CSIA allowed quantification of HCH degradation for expected flow paths

Leipzig

München

Isodetect GmbH
Dr. Kevin Kuntze
Deutscher Platz 5b
D-04103 Leipzig
Germany

Mail: <u>kuntze@isodetect.de</u> Phone: +49 341 35535851 Mobil: +49 176 45718438

Web-page: <u>www.isodetect.de</u>

Environmental Monitoring Tools

Compound-specific stable isotope analysis (CSIA) In situ Microcosms (BACTRAP®)
Laboratory Microcosms / Treatability Studies
PLFA Analysis
Molecular Genetic Analysis (qPCR)
GC-MS Analysis (GC-Fingerprints)
Metabolite Analysis
Enantiomer Analysis (Pesticides!)

Evaluating drinking water resources

(e.g., Tritium, δ^2 H, δ^{18} O, FCKW/SF₆, 3 He, 85 Kr, 14 C)

Investigating renewable and fossil energies

(e.g., Evaluating microbial processes in hydrogen underground storage)

