KUNTZE, KEVIN Lab Manager # SOURCE ALLOCATION AND DEGRADATION EVALUATION OF HCHS WITHIN A CONTAMINATED AQUIFER USING COMPOUND-SPECIFIC STABLE CARBON ISOTOPE ANALYSIS (CSIA) Kuntze, K., Richnow, H., Fischer, A. ## How to assess HCH-contaminated sites Who was this and how many? Is degradation taking place? Can degradation be stimulated? Compound-specific Stable Isotope Analysis (CSIA) # What are isotopes ...atoms of an element with the same number of protons but different numbers of neutrons ### **For example Carbon:** = 0.96% to 1.16% = 98.84% to 99.04% **Isotope ratio** ²H/¹H ³⁷CI/³⁵CI ¹⁵N/¹⁴N measured via isotope ratio mass spectrometry (IRMS) stable isotopes synthetic radioactive isotope | p | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |------|-------------------|-----------------|------------------|------------------|-----------------|-----------------|-----------------|-----------------| | . // | Н | He | Li | Be | В | С | N | 0 | | n | Number of Protons | | | | | | | | | 0 | ¹ H | | | | | | | | | 1 | D | ³ He | | | | 0.01 | | | | 2 | Т | ⁴ He | ⁵ Li | ⁶ Be | | 8C | | | | 3 | | ⁵ He | 6Li | ⁷ Be | ⁸ В | 9C | | | | 4 | | ⁶ He | ₹Li | ⁸ Be | ⁹ B | ¹⁰ C | ¹¹ N | | | 5 | | | ⁸ Li | ⁹ Be | ¹⁰ B | ¹¹ C | ¹² N | ¹³ 0 | | 6 | | ⁸ He | ⁹ Li | ¹⁰ Be | ¹¹ B | ¹² C | ¹³ N | 140 | | 7 | | | | ¹¹ Be | ¹² B | ¹³ C | 14 _N | ¹⁵ O | | 8 | | | ¹¹ Li | ¹² Be | ¹³ B | ¹⁴ C | 15 _N | 160 | | 9 | | | | | ¹⁴ B | ¹⁵ C | ¹⁶ N | ¹⁷ 0 | | 10 | | | | ¹⁴ Be | ¹⁵ B | ¹⁶ C | 17 _N | 180 | | 11 | | | | | | ¹⁷ C | 18 _N | ¹⁹ 0 | | 12 | | | | | ¹⁷ B | ¹⁸ C | ¹⁹ N | ²⁰ O | | 13 | | | | | | ¹⁹ C | ²⁰ N | 210 | | 14 | | | | | | | ²¹ N | ²² 0 | | 15 | | | | | | | *** | ²³ O | | 16 | | | | | | | | 240 | W # Why do I need to analyze them (2) # Isotope signature of the primary compound $\delta^{18}O = +2 \% SMOW$ ¹³C-HCH $\delta^{15}N = +7 \% AIR$ #### **FINGERPRINT – Source Identification** www.isodetect.de # Field site: HCH-contaminated aquifer - 1. Can source zones of HCHs be confirmed by CSIA? - 2. Does in situ degradation of HCHs take place and to which extend? # δ -HCH Former production facilities at well A Former HCH-dump at wells D/E Former storage depot Degradation # Improved conceptual site model due to CSIA # Quantification of pollutant biodegradation 1. Order degradation rate constant δ-HCH: 19×10^{-3} 6×10^{-3} α-HCH: 10×10^{-3} 3×10^{-3} β-HCH : 37 x 10⁻³ 11 x 10⁻³ ## **Conclusions** - CSIA confirmed different source zones at the investigated field site - CSIA provided evidence of HCH degradation in the investigated aquifer - CSIA allowed quantification of HCH degradation for expected flow paths Leipzig München Isodetect GmbH Dr. Kevin Kuntze Deutscher Platz 5b D-04103 Leipzig Germany Mail: <u>kuntze@isodetect.de</u> Phone: +49 341 35535851 Mobil: +49 176 45718438 Web-page: <u>www.isodetect.de</u> #### **Environmental Monitoring Tools** Compound-specific stable isotope analysis (CSIA) In situ Microcosms (BACTRAP®) Laboratory Microcosms / Treatability Studies PLFA Analysis Molecular Genetic Analysis (qPCR) GC-MS Analysis (GC-Fingerprints) Metabolite Analysis Enantiomer Analysis (Pesticides!) #### **Evaluating drinking water resources** (e.g., Tritium, δ^2 H, δ^{18} O, FCKW/SF₆, 3 He, 85 Kr, 14 C) #### **Investigating renewable and fossil energies** (e.g., Evaluating microbial processes in hydrogen underground storage)