Innovative HCH in-situ remediation using polymer as a reagent Carriers—Results at field scale

Julien MAIRE and Antoine JOUBERT (SERPOL - antoine.joubert@serpol.fr)
Iheb Bouzid (Univ. Bourgogne Franche-Comté)
Nicolas Fatin-Rouge (Université de Poitiers)

Improving treatment of HVOC adsorbed in high velocity aquifer

2017 - 2021

3 technologies developed and tested at lab scale

One was selected (reactive gel) to be assessed on the field

→ Objective: Increase contact between reactive and pollutant in a high velocity aquifer (homogeneous delivery and increased contact time)

INTRODUCTION > PORJECT SITE

- Alluvial materials

- GW table: 8-10 m depth

- GW flow: 10 m/day

- High concentrations in lindane and isomers : Q_{25} – Q_{75} : 11 – 265 mg/kg between 0-15m

=> Main objective : treating the capillary fringe and the first meters of aquifer

+ alcaline agent

LINDANE and isomeres

Persistant organic pollutant (POP)

Low mobility (Low vapor pressure and solubility)

NON-TREATABLE within sites conditions

1,2,4-Trichlorobenzene

Non-listed as a POP

More mobile Henry constant x400

TREATABLE

with conventional treatment (sparging/venting)

INTRODUCTION > REACTIVE GEL IN LAB EXPERIMENT

0 min

25 min

1) Injection of alcaline reagent alone

- Flows only in high permeability
- Leached by GW flow

2) Injection of reactive gel

- Propagates more homogeneously (shear-thinning behaviour)
- Not leached by GW flow (bypass)

0 min

- Very slow dissolution by GW flow
- Lifetime > 3 weeks
- Alcaline reagent remains stored in the gel

5 days

10 days

18 days

FIELD PILOT > GEL PREPARATION

Containerized setup for gel preparation and injection

Injection well

FIELD PILOT > GEL INJECTION AND MONITORING

25 m³ of gel injected into wells I1 to I6

→ 150 m³ of reactive gel injected

Monitoring (automated)

- GW table levels (6 probes)
- Conductivity (Multi-depth, 25 probes)
- Temperature

Monitoring (manual)

- Diagraphy (pH, ORP, conductivity, dissolved O₂ and temperature)
- Hydrogeological assays (GW flow velocity,...)

Analytic monitoring

- Weekly GW samples
- Multi-depth samples (before/after injections)
- Monitoring of lindane and isomers, chlorobenzene (mono- to hexa-), benzene, HC, TOC

Allows resistivity measurements between wells

→ Then 2D images are created

GEL PROPAGATION > CENTRAL INJECTION (15) MONITORING

No visible difference after 25 m³ injected, since gel propagation continued beyond ERT-imaging zone. Gel arrived 10 m upstream (Pz47) after 120 m³ injected.

Gel showed high persistency despite high permeability and high GW flow

10 months after the end of injection, significant amount of gel is still present in the soil!

Initial characterisation:

- 6 soil drillings 0-15 m
- 90 samples

Final characterisation (1 month after injections):

- 5 soil drillings 0-15 m
- 75 samples

Gel still present (observed) in soil samples at sampling time

HCH DEGRADATION > CONCENTRATIONS IN SOIL

(between 8 and 12 m)

Whole depth

(between 0 and 15 m)

Initial median (mg/kg)

119

Final median (mg/kg)

17,2

Degradation yield

86%

Conclusions

Gel is a very interesting vector to disperse reagents in soils: it improves spatial distribution and time contact with adsorbed contaminants, even in the context of high velocity aquifer!

Alkaline gel is very efficient for in-situ lindane and isomers degradation.

Gel is able to strongly reduce local groundwater flow during several month.

Tomography can be used to monitor 3D gel propagation in real-time.

