

CHECA-FERNÁNDEZ, ALICIA

PhD student

Complutense University of Madrid

REMEDIATION OF HCHS-POLLUTED SOILS BY SURFACTANT-ENHANCED WASHING AND ACTIVATED PERSULFATE OXIDATION

Alicia Checa-Fernández, Aurora Santos, Arturo Romero, Carmen M Domínguez

* INTRODUCTION

• Anphiphilic nature: Mydrophilic group

Hydrophobic group

$$S_2O_8^{2-} + Fe^{2+} \rightarrow Fe^{3+} + SO_4^{2-} + SO_4^{3-}$$

 $2S_2O_8^{2-} + 2H_2O \xrightarrow{OH^-} 3SO_4^{2-} + SO_4^{--} + O_2^{--} + 4H^+$

pH=7

PS-T

$$S_2O_8^2 \xrightarrow{\mathsf{T} \text{ or hv}} 2 SO_4^{-1}$$

pH=7

PS-NaOH

$$SO_4^{-} + OH^{-} \rightarrow SO_4^{2-} + OH^{-}$$

pH>12

Surfactants

Surfactant-enhanced pollutants solubilization

Polluted emulsion

Activated Persulfate (PS)

Chemical Oxidation Processes

OBJECTIVE

Application of surfactants with PS-oxidation treatments

Soil washing (SW) experiments

- ✓ Surfactant ability to solubilize the soil pollutants
- ✓ Selection SW conditions: surfactant, pH, reagents concentration, number of washing cycles, etc.

Oxidation of polluted emulsion (PE)

- ✓ Maximum degradation of pollutants
- ✓ Moderate oxidant consumption

SW experiments **Surfactants**

Anionic: Sodium dodecyl sulfate

Non-Ionic:

Tween-80 (T80), Emulse-3 (E3)

Oxidation experiments

PS activated by NaOH and T

Soil washing (SW) experiments

Effect of the main variables of the SW process

Number of

24 h (equilibrium) 100 rpm					
30 ml aqueous phase					
15 g polluted soil					

Objective	Surfactant	C _{surf} (g/L)	C _{NaOH} (g/L)	solubilization cycles
Effect of surfactant and pH	No surfactant SDS, E3, T80	10	0 (pH=7) 13.5 (pH>12)	1
Effect of alkali concentration	SDS, E3, T80	10	2.5, 4, 13.5	1
Effect of surfactant concentration	SDS, E3	2, 5, 10	10	1
Successive solubilization cycles	SDS, E3	SW1=5 SW2=2.5 SW3=1.25	SW1=4 SW2=0 SW3=0	3

Soil washing (SW) experiments

Analytical techniques

Slurry system

After 24 h (equilibirum)

Centrifugation

10 min, 900 rpm

Soil washing (SW) experiments

Analytical techniques

Polluted emulsion (PE) oxidation experiments

PS activated by alkali and intensified by T

Analytical techniques

PS concentration →

Spectrophotometry

Objective	PE employed	Surfactant	C _{PS} (g/L)	
COCs		Nº SW SDS cycles	40	
oxidation	PE- E3 -1 PE- E3 -1,2,3	E3	40	

T=40 °C, 80 rpm

• COCs concentration

Gas chromatography (GC-FID/ECD)

Molar ratio of NaOH:PS=2

RESULTS

Selection SW conditions

1.1. Effect of surfactant and pH

$$K_{d,COCs} = \frac{COCs_{soil\ phase}}{COCs_{aqueous\ phase}}$$

Lower $K_{d,COCs}$ \longrightarrow Higher COCs solubilization \checkmark

Hydrolysis

pH>12

Experimental conditions:

 $C_{surfactant}$ =10 g/L, V_L/W_{soil} =2, 100 rpm, 24 h, 20 °C

SELECTED:

Alkaline conditions (pH>12)

RESULTS

Selection SW conditions

1.2. Effect of NaOH concentration

Aq. phase Soil phase

 $C_{surf} = 10g/L, V_L/W_{soil} = 2, 100 \text{ rpm}, 24 \text{ h}, 20 \text{ }^{\circ}\text{C}, \text{ pH>12}$

SELECTED:

- SDS and E3
- C_{NaOH}=4 g/L

RESULTS

Selection SW conditions

1.3. Effect of surfactant concentration

Soil phase Aqueous phase

- Excessive C_{surfactant}:
- Reduces COCs availability towards oxidation
- Compete with contaminants for radicals
- Greater improvement from 2.5 to 5 g/L

Selection SW conditions

1.4. Sucessive solubilization cycles

Solubilization rate (%) =
$$\frac{\textit{COCs}_{aq, phase} \cdot \frac{\textit{V}_L}{\textit{W}_S}}{\textit{COCs}_{soil, phase}} \cdot 100$$

PE employed for the subsequent oxidation treatment:

SDS and E3 emulsions (after 1 and 3 SW cycles)

Oxidation of the polluted emulsion (PE)

- Higher PS consumption in presence of E3
- **Higher PS** consumption at higher C_{surfactant}

RESULTS

PS activated by NaOH and T

OH

X_{cocs}=96%, 72h X_{PS}=75%, 72h

 $\textbf{Higher}~\textbf{X}_{\textbf{cocs}}~~\textbf{when treating}~\textbf{SDS}\text{-emulsions}$ → Independent of C_{surf}

time (h)

 $\textbf{Lower X}_{\textbf{cocs}} \text{ when treating } \textbf{E3}\text{-emulsions}$ with higher C_{surfactant}

→ Surfactant hindering effect

EXAMPLE 2 CONCLUSIONS

 $\textbf{Low T80 stability}, \ decreasing \ the \ COCs \ solubilization.$

Optimal conditions: moderate NaOH and surfactant (SDS or E3) concentrations (4 g/L and 5 g/L, respectively), 3 solubilization cycles, more than 80% of COCs extracted from soil.

	SDS		Tween		Emulse	
COCs solubility	(S	Image: Control of the		

pH>12

pH=7

pH>12

pH=7

pH>12

EXAMPLE 2 CONCLUSIONS

X Higher PS consumption when increasing surfactant concentration and in presence of **Emulse**

Higher X_{cocs} when treating SDS-emulsions

(X_{COCs}=96%, 72h)

	SDS		Tween		Emulse	
COCs solubility			S	X		
PS consumption	-		-	-	-	X
COCs oxidation	-		-	-	-	X

pH=7

pH>12

pH=7

pH>12

pH=7 pH>12

THANK YOU FOR YOUR ATTENTION

crcheca@ucm.es

ComplutenseUniversity of Madrid

