

Project Director **AECOM** 



# AIR SPARGING AND SOIL-VAPOR EXTRACTION PILOT TESTS IN BAILIN LANDFILL, SABIÑANIGO (HUESCA)

Alonso T.<sup>1</sup>, Alcalde D.<sup>1</sup>, Escobar-Arnanz J.<sup>1</sup>, Encinas R.<sup>1</sup>, Fernández J.<sup>2</sup>



<sup>&</sup>lt;sup>1</sup> AECOM. Environment and Sustainability Department. Remediation Area. Spain

<sup>&</sup>lt;sup>2</sup> Department of Agriculture. Livestock and Environment. Aragon's Government. Zaragoza. Spain



#### **ROADMAP**

What is Air-Sparging/Soil Vapor Extraction?

Particular application of AS/SVE in Bailín

AS/SVE based techniques tested on site

Results and conclusions





#### WHAT IS AIR-SPARGING/SOIL VAPOR EXTRACTION?

- AS/SVE is a remediation technique used for the treatment of VOCs & SVOCs
- AS involves injecting clean air into the saturated zone to volatilize groundwater contaminants.
- SVE involves extraction of the vapor phase from the vasode zone









# **AS/SVE CUSTOMIZATION TO BAILIN'S CONCEPTUAL MODEL**





#### **AS/SVE PILOT TESTS**





#### **AS/SVE PILOT TESTS: OBJECTIVES**

Main goal: evaluate total mass removal rate (g/d)

#### **2018**

- Testing and adapting several configurations based on AS/SVE technique ightarrow 1 Monitoring well
  - 1. AS/SVE
  - 2. AS/SVE + IWAS
  - 3. AS/SVE +  $\uparrow$ T $\circ$ C

#### <u>2019</u>

- Testing the more convenient configuration of 2018  $\rightarrow$  4 Monitoring well
- Try to couple AS/SVE + ISCO
- Control barrier: AS/SVE plant design

#### <u>2021</u>

• Testing more convenient configuration of 2018  $\rightarrow$  3 Monitoring well in mudstones  $\rightarrow$  former HCH landfill





#### **2018: AS/SVE BASED TECHNIQUES DEPLOYED ON SITE**





















#### **AS/SVE 2018: MONITORING PLAN:**

- In the groundwater: VOC concentration (lab), GW levels, temperature, conductivity, (data loggers), pH, ORP, dissolved oxygen (probes)
- In the extracted vapor: VOC concentration (AC tubes)
- In the AS/SVE system: explosiveness, O<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub>, HS<sub>2</sub>, air injection and extraction rates, air injection pressure (gauges)































## **RESULTS: MASS REVOMAL RATES**

|   | Year / Area | Pilot test    | Test<br>well | Benzene<br>(g/d) | Monochloro-<br>benzene<br>(g/d) | Sum of<br>dichloro-<br>benzenes<br>(g/d) | Sum of<br>trichloro-<br>benzenes<br>(g/d) | Total<br>mass<br>removal<br>rate (g/d) |
|---|-------------|---------------|--------------|------------------|---------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------|
|   | 2018 / Zona | AS/SVE        | I1           | 10               | 101                             | 23                                       | 4                                         | 138                                    |
|   |             | IWAS          | I1           | 16               | 128                             | 35                                       | 7                                         | 186                                    |
| 2 | Barrera     | AS/SVE with T | I1           | 23               | 227                             | 42                                       | 5                                         | 297                                    |



# PARTICULAR APPLICATION OF AS/SVE IN BAILÍN

| Year / Area            | Pilot test    | Test<br>well | Benzene<br>(g/d) | Monochloro-<br>benzene<br>(g/d) | Sum of<br>dichloro-<br>benzenes<br>(g/d) | Sum of<br>trichloro-<br>benzenes<br>(g/d) | Total<br>mass<br>removal<br>rate (g/d)             |
|------------------------|---------------|--------------|------------------|---------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------------|
| 2018 / Zona<br>Barrera | AS/SVE        | I1           | 10               | 101                             | 23                                       | 4                                         | 138                                                |
|                        | IWAS          | I1           | 16               | 128                             | 35                                       | 7                                         | 186                                                |
|                        | AS/SVE with T | I1           | 23               | 227                             | 42                                       | 5                                         | 297                                                |
| 2019 / Zona<br>Barrera |               | I1           | 18               | 163                             | 30                                       | 3                                         | 215                                                |
|                        | A C/CVIE      | O1           | 16               | 128                             | 26                                       | 4                                         | mass<br>removal<br>rate (g/d)<br>138<br>186<br>297 |
|                        |               | 12           | 6                | 71                              | 17                                       | 2                                         | 96                                                 |
|                        |               | O2           | 14               | 115                             | 21                                       | 2                                         | 153                                                |
|                        | AS/SVE + ISCO | I1           | 12               | 107                             | 17                                       | 2                                         | 137                                                |





# PARTICULAR APPLICATION OF AS/SVE IN BAILÍN

| Year / Area            | Pilot test    | Test<br>well | Benzene<br>(g/d) | Monochloro-<br>benzene<br>(g/d) | Sum of<br>dichloro-<br>benzenes<br>(g/d) | Sum of<br>trichloro-<br>benzenes<br>(g/d) | Total<br>mass<br>removal<br>rate (g/d) |
|------------------------|---------------|--------------|------------------|---------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------|
| 2018 / Zona<br>Barrera | AS/SVE        | I1           | 10               | 101                             | 23                                       | 4                                         | 138                                    |
|                        | IWAS          | I1           | 16               | 128                             | 35                                       | 7                                         | 186                                    |
|                        | AS/SVE with T | I1           | 23               | 227                             | 42                                       | 5                                         | 297                                    |
|                        | AS/SVE        | I1           | 18               | 163                             | 30                                       | 3                                         | 215                                    |
| 2019 / Zona<br>Barrera |               | 01           | 16               | 128                             | 26                                       | 4                                         | 174                                    |
|                        |               | 12           | 6                | 71                              | 17                                       | 2                                         | 96                                     |
|                        |               | O2           | 14               | 115                             | 21                                       | 2                                         | 153                                    |
|                        | AS/SVE + ISCO | I1           | 12               | 107                             | 17                                       | 2                                         | 137                                    |
| 2021 /                 | AS/SVE        | P162         | 4                | 26                              | 2                                        | 0                                         | 32                                     |
| Former                 |               | P166         | 1                | 8                               | 1                                        | 0                                         | 10                                     |
| HCH landfill           |               | P184         | 10               | 43                              | 4                                        | 0.2                                       | 57                                     |





# **NEW TREATMENT PLANT FOR GW PLUME (AS/SVE & ISCO)**





## **NEW TREATMENT PLANT FOR GW PLUME (AS/SVE & ISCO)**







#### **RESULTS AND CONCLUSIONS**

- Vapor mass removal rates are higher enough to use the AS/SVE technology for the GW plume control of the VOC & SVOC compounds
- All tests showed that, once the aeration began, the concentrations of COCs in the groundwater decreased significantly but not full reductions observed
- Once the tests were finished, the baseline concentrations were recovered rapidly, since the contaminant mass is constantly flowing from source zone upgradient
- Higher rates were obtained with the more complex configurations (AS/SVE + IWAS; AS/SVE + ↑TºC). However, the simplest configuration it is recommended for a full-scale application, due to all operation and maintenance work is easier, the associated costs are lower, and it is the most sustainable configuration.



## THANK YOU FOR YOUR ATTENTION

david.alcalde@aecom.com

