

GARCÍA-CERVILLA, RAÚL

PhD

Universidad Complutense de Madrid Departamento de Ingeniería Química y de Materiales

ISCO AND S-ISCO EVALUATION IN THE REMEDIATION OF SARDAS ALLUVIUM

Lorenzo, D., Domínguez, C. M., <u>García-Cervilla, R.</u>, Santos, A., Checa-Fernández, A., Fernández, J., Guadaño, J., Gómez, J.

Obsolete pesticide: Lindane

- Lindane (γ -isomer of HexachloroCycloHexane) is an obsolete pesticide heavily used as a wide-spectrum insecticide in public health programs and as a wood preservative.
- Banned by Stockholm Convenia (POP).
- Hughe amounts of toxic wastes were generated and dumped in the nearby production sites without environmental concern.

Lindane wastes in Sabiñánigo (Spain)

- ✓ The Company INQUINOSA operated from 1975 to 1988 in Sabiñánigo, Spain.
- ✓ HCH production generated approximately 150000 tonnes of waste, mainly dumped in two unlined landfills: Sardas and Bailin, close to the river Gallego and the Sabiñanigo Reservoir.

Treatment train for NAPL removal

Soil samples

Soil B1 : Unpolluted

Soil B2: 3680 mg·kg⁻¹ of COCs

HCH

ISCO and S-ISCO experiments

H₂O

 CO_2

Toxicity analysis (Microtox®)

Comparing and adapting different methods

2. Aqueous extract:
Basic Test

1. Soil phase:

Basic Solid-Phase Test

3. Organic extract:

Organic Solvent Sample Solubilization Test Solvent: Methanol

EC₅₀:
Concentration of the sample resulting in a 50% reduction of the initial luminescence of the bacteria.

Results:

Polluted samples: EC₅₀ (%)

EC₅₀ (%) toxicity

Compare: UT₅₀

Direct relation between the toxic effect and the numerical toxicity value:

$$UT_{50} = \frac{1}{EC_{50}}$$

Measuring natural luminescence from marine bacteria: Vibrio fischeri

% inibition

pH setting = 6 - 8

ISCO and S-ISCO treatments

Surfactant **improve** the COCs desorption

Radicals **oxidize** the pollutant

(TCBs, TetraCBs)

Also E-Mulse 3

The higher the concentration of COCs in the aqueous phase, the higher the elimination rate

However

Oxidation in soil phase

Significant conversions with ISCO

100 S-ISCO 5 S-ISCO 10 COCs removed (%) 60 4PVs 8 PVs

Soil phase

Aqueous phase

Toxicity evaluation

Clasification

EC₅₀ > 10%: non-toxic

 $EC_{50} = 1\% - 10\%$: moderate toxicity

 $EC_{50} < 1\%$: high toxicity

Kwan, K. K. et al. 1990. Toxicity Assessment. 5, 4, 395-404

Basic Solid-Phase Test (mBSPT)

Organic Solvent Sample Solubilization Test (aOSSST)

Conclusions

The initial polluted soil showed high acute toxicity, and the toxicity of the soils treated by ISCO and S-ISCO decreased significantly. Comparable to the high COC elimination achieved with these treatments.

The application of E3 as a surfactant did not show an increase in soil toxicity after the oxidation treatments.

ISCO and S-ISCO, with alkaline activation of PS can be proposed for real aplication, as they lead to a high COCs reduction and restore the soil to its original toxicity value.

Acknowledgments

 This work was supported by the EU LIFE Program (LIFE17 ENV/ES/000260), the Regional Government of Madrid, through the CARESOIL project (S2018/EMT-4317), and the Spanish Ministry of Economy, Industry, and Competitiveness, through project PID2019-105934RB-I00-R. The authors thank the Department of Agriculture, Livestock and the Environment, Government of Aragon, Spain, as well as EMGRISA and SARGA, for kindly supplying the samples

THANK YOU FOR YOUR ATTENTION

raugar05@ucm.es

