

NĚMĚCEK, JAN
Senior Researcher

EXPERIENCE FROM OPERATION AND TUNNING OF WETLAND+® TECHNOLOGY FOR TREATMENT OF HCH-CONTAMINATED WATER

Němeček, J.¹, Brůček, P.², Hrabák, P.¹, Černík, M. ¹

¹Technical University of Liberec, Liberec, Czech Republic ² DIAMO s.p., Příbram, Czech Republic

P1 Team:

- Technical University of Liberec, Czech Republic:

 Miroslav Černík, Pavel Hrabák, Tereza Sázavská, Jan Němeček
- Masaryk University, Czech Republic: Josef Zeman
- DIAMO s.p., Czech Republic: Petr Brůček
- Photon Water Technology s.r.o., Czech Republic:
 Petr Kvapil, Vojtěch Antoš

Wetland+ layout

Wetland+ system operated in the period IX.2021 - VI.2022

Wetland+ monitoring system

Wetland+ monitoring system

Wetland+ monitoring system

Wetland+ - efficiency analysis:

- Current flow through segments B (macroFe⁰) and chemical content of inflow water result in aerobic rather than anoxic corrosion of Fe⁰.
- Aerobic corrosion of Fe⁰ does not generate H₂, that is main reducing agent for highly chlorinated organic compounds, incl. HCH.
- Furthermore, Fe(OH)₃ precipitates under aerobic conditions that rapidly clogs and deactivate macroFe⁰.

Wetland+ modification

Wetland+ modification

Wetland+ monitoring – August 2022 data

B1 – B2 pathway (unmodified)

B5 – B6 pathway (modified)

Wetland+ related research – geochemical modeling

Wetland+ related research – geochemical modeling

Wetland+ monitoring

16

Wetland+: Overall Removal Efficiency of HCH Isomers

September 2022 data

Wetland+ monitoring

September 2022 data

Wetland+: Removal Efficiency of HCH Isomers in Segments B

September 2022 data

Wetland+: Removal Efficiency of HCH Isomers in Segments B

September 2022 data

decay rates: $\alpha = \gamma > \delta > \beta > \epsilon$

Wetland+: analysis of degradation pathways

Possible pathways of lindane dechlorination by ZVI (Wang et al. 2009)

B1 + B2 pathway (unmodified)

B5 + B6 pathway (modified)

B1 + B2 pathway (unmodified)

B5 + B6 pathway (modified)

Wetland+ Mass Discharge

HCH Mass Discharge into the Ostrovský Creek [g/day]

Ostrovský Creek

Horní Štít Pond

Wetland+ Eliminated Mass

Summary

- Modification of Wetland+ at Hájek led to low HCH concentrations at the outlet (<10 μg/l), and high HCH removal (95% to date);</p>
- ✓ Various removal efficiency for individual HCH isomers: α = γ = δ > β = ε
 - \rightarrow δ -HCH dominates at the inlet, ϵ -HCH dominates at the outlet;
- ✓ HCH mass discharge to the Ostrovský Creek decreased from 23 to 25 g/day to 0.8 0.9 g/day (approximately 97% decrease);
- ✓ Till 10 November 2022 P1 removed :
 - approximately 3.8 kg HCH
 - approximately 16 kg ClB
 - approximately 0.5 kg ClPh
- ✔ Further modification needed to sustain efficiency!!

Thank you for your attention!

