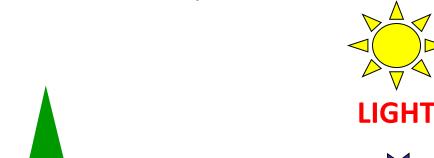


Benefits of the presence of plants in WETLAND⁺ system, treating HCH polluted sites.

• C. A. Arias, S. Vrchovecká, A. Amirbekov, Sázavská, Novotný, C. Ramirez, E. Jespersen, M. Černík, P, Hrabák



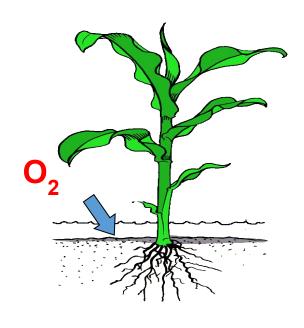
Wetlands have a very high productivity and therefore also a high capacity to transform and store organic matter and nutrients

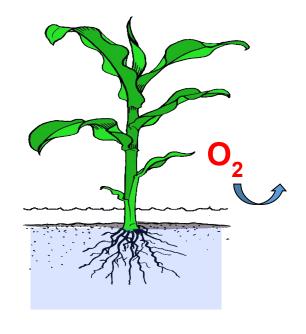
WATER

'Natural system', where treatment processes occur simultaneously in a single "ecosystem" reactor

What is a Treatment Wetland?

- An engineered wetland system designed to harness natural process for the purpose of improving water quality
- Technically and operationally simple, but involving complex interactions between:
 - Water
 - Soil
 - Plants
 - Micro-organisms, and
 - the atmosphere

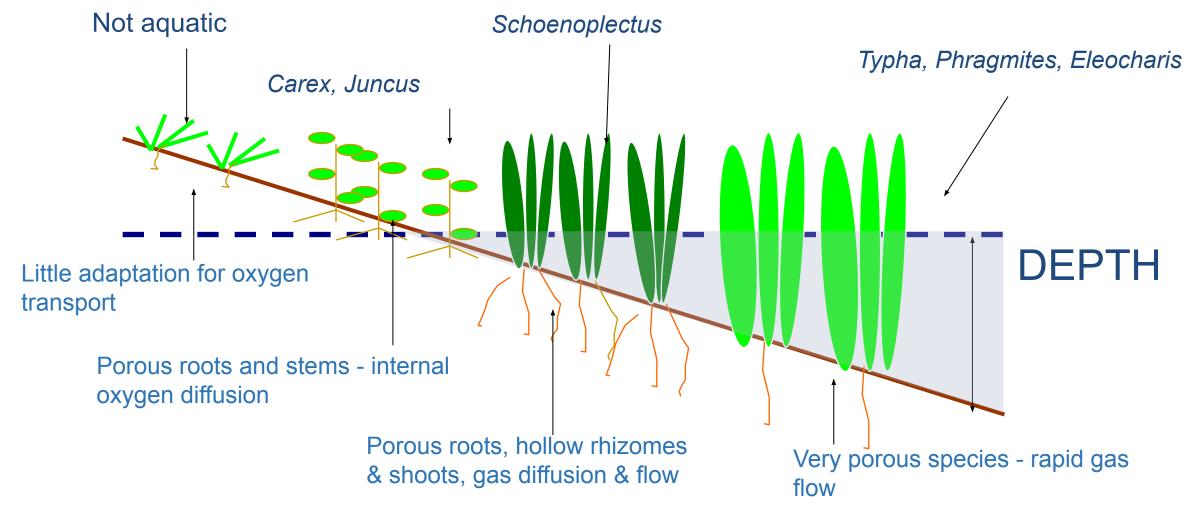


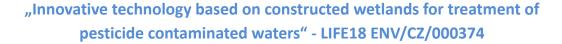


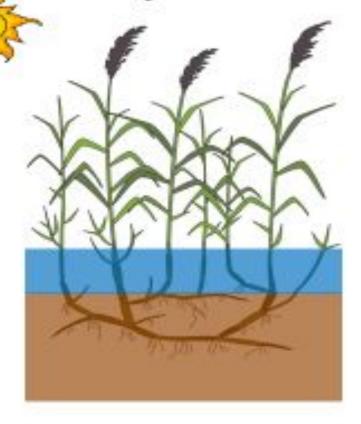
FLOODED DRAINED

- No mitosis
- Low evergy production (ATP)
- **Ethanol accumulation**
- **Use of carbohydrate reserves**
- **Post-anoxia metabolites**
- Superoxide radikals (0₂.-)

Diffusion of oxygen in water 10.000 times slower than in air







Plant processes of importance in TWs

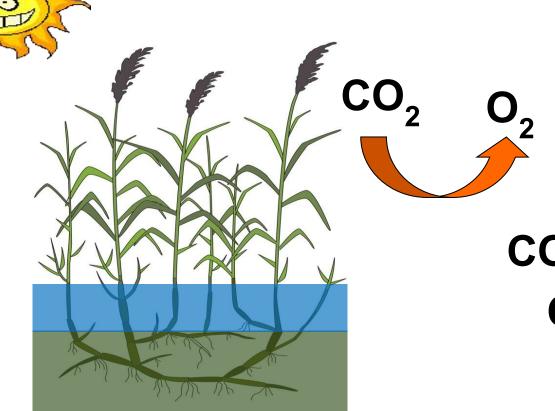
- Growth and biomass production
- Photosynthesis
- Nutrient uptake
- Water uptake
- Oxygen transport
- Metabolism
- Food chain support

21 February 2023 31

How much can biomass contribute?

Typical biomass production:

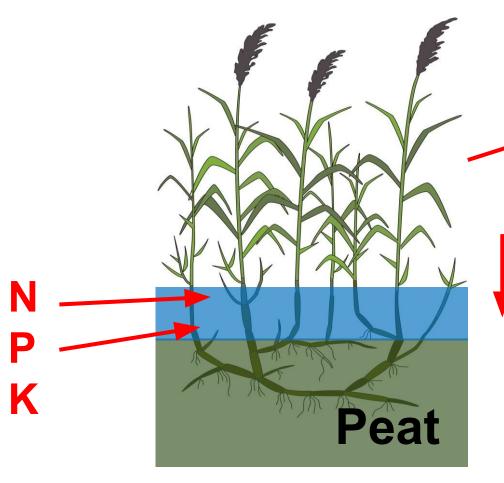
2 kg dw m⁻² @ 40% C c. 8000 kg C ha⁻¹ year⁻¹



Jaworzno

Photosynthesis

Oxygenation of water O₂ and pH variations



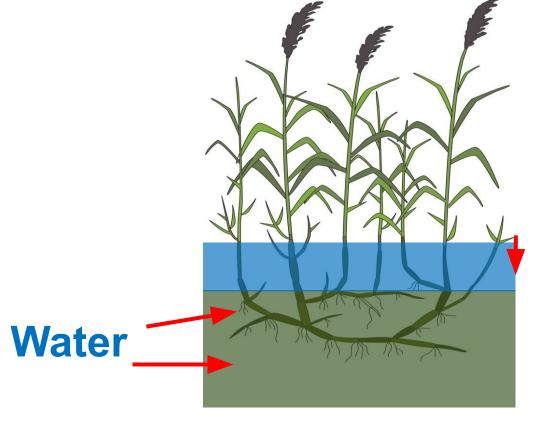
Nutrient uptake

HARVEST

(in most cases not practical)

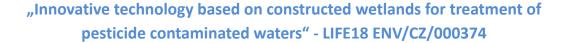
PEAT ACCRETION

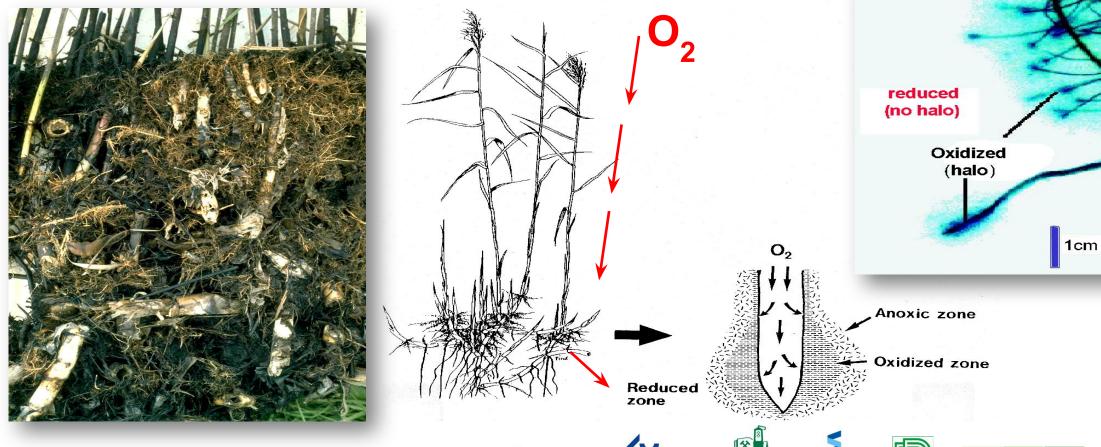
(sustainable removal process in low-loaded systems)

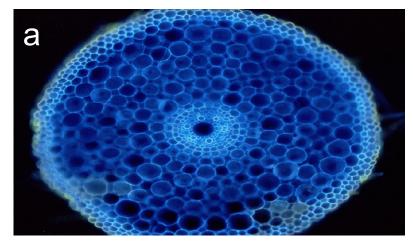


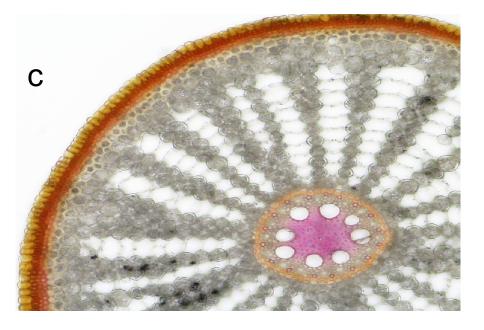
The Transpiration Pump

Increases flux of pollutants into the soil








B

Aerenchyma: Tissue with internal air-spaces

- a Phragmites, schizogenous spaces near root tip
- b *Phragmites*, radially oriented lysigenous air channels
- c *Carex gracilis*, tangentially oriented lysigenous air channels

Cross sections through roots

Wetland **Plants**

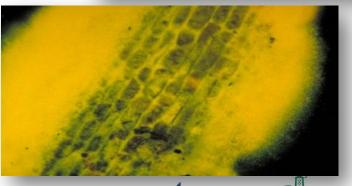
58 % Phragmites australis Typha latifolia 40 % Glyceria maxima **50** % Menyanthes 43 % Acorus calamus 36 % Phalaris arundinaceae 22 %

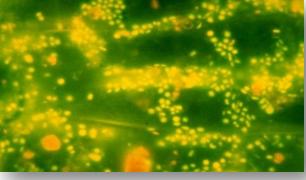
>20 %

Terrestri al Plants

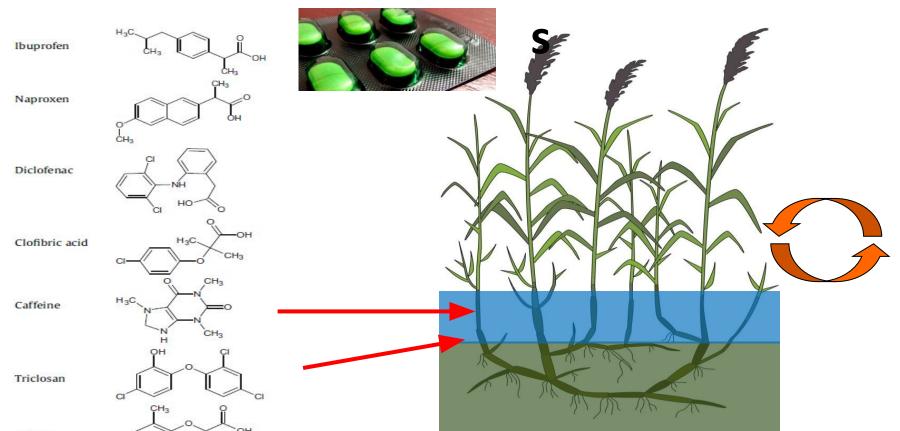
6.6 % Achillea millefolium Vicia faba 3.8 % 1.9 % Festuca rubra < 7 % Silene dioica 2.9 % Luzula campestris 3.6 % Pisum sativum 3.8 %

Root porosity (% air-space)





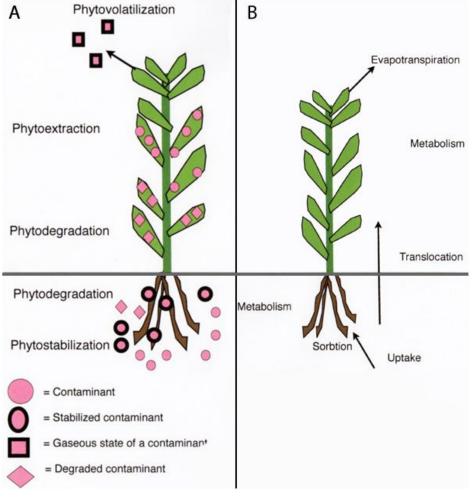
Surface area for attached microbial



Micro-contaminant

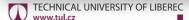
Uptake and degradation in plants

MCPA



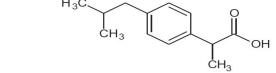
Plant functionality in wetland

Salvinia


Ceratophyllum

Lemna

Elodea



V. Matamoros et al. / Chemosphere 88 (2012) 1257–1264

- 60 pots with Juncus effusus, Typha latifolia, Phragmites australis, Alnus glutinosa and blancks set up in a growth chamber
- Spiked with HCH solution to three different pesticide concentrations (20, 200, $1000 \mu g.l-1)$
- Two treatments δ -HCH and t-HCH
- Reserach on removal and microbial presence

δ-ΗСΗ	δ-HCH dose [μg. pot ⁻¹]]	Total removal efficiency [% of HCH dose]	Sum of HCH in roots [% of HCH dose]	Sum of HCH in above-ground parts [% of HCH dose]	Missing δ-HCH [%]
Unplanted soil	24	43.83±7.71	-	-	-
	240	8.90±14.77	-	-	-
	1200	3.01±8.3	-	-	-
J. effuses	24	62.11±12.52	12.83±1.98	2.89±0.80	3.52±2.93
	240	63.54±14.50***	10.98±0.24	1.85±0.53	41.80±16.99
	1200	46.98±15.18**	5.75±1.71	10.07±2.16	28.15±12.77
T. latifolia.	24	52.47±9.79	3.90±0.64	1.10±0.42	3.65±0.83
	240	29.00±13.39	5.51±1.25	0.47±0.17	14.11±2.89
	1200	18.37±15.13	5.87±2.90	3.37±0.45	6.11±8.71
A. glutinosa	24	73.88±4.81*	24.86±2.02	2.40±0.54	2.80±0.25
	240	71.62±7.74***	21.70±4.27	2.19±0.23	39.97±3.09
	1200	48.72±10.85**	21.03±2.28	4.38±0.42	20.36±0.68
P. australis	24	61.23±9.53	10.99±0.63	2.26±0.80	4.14±2.42
	240	59.47±2.49**	7.73±2.14	1.26±0.14	28.48±0.86
	1200	10.09±11.17	5.78±2.32	4.56±1.96	-1.73±1.58

Results:

- The removal efficiency of unplanted controls decreased by the increased HCH concentration
- The presence of plants increased the removal efficiency
- Removal efficiency Alder > Juncus > Typha > Phragmittes
- All species shown better phytoexctractability toward δ -HCH isomer (max. 50-70 %) than to t-HCH of the same load (40-50 %)
- 1,3-DiCB was found as HCH transformation product in most of the plants (not found in soil)
- If the effect of environmental conditions and bacteria is excluded, it can be observed that the positive effect of the plants is most pronounced in the group exposed to 200 ug. L⁻¹

δ-HCH

- •possible transisomerization because α -HCH, β -HCH, and γ -HCH were also recorded the stock solution contained only the δ -HCH, in the soil was also only δ -HCH, other isomers were recorded in plant biomass but in very low concentration (detected in all plant species at two highest exposure concentrations).
- •AG was the high concentration of the pesticide in the trunks and, on the contrary, very low in the leaves, especially in the groups exposed to 200 and 1000 μ g. L⁻¹ of δ -HCH. These results correlate with the levels of 1,3-diClb where generally in AG trunks the concentration was the highest.

•t-HCH

- •No significant preference in the removal of a specific isomer was observed
- •Determined concentrations in biomass are generally lower than in the δ -HCH

